• Our new home,

    from summer 2021

  • Global Warming:

    the threat of a permafrost Carbon – climate feedback

  • We develop and improve

    stable isotopes techniques for ecological applications

  • Plants, fungi and bacteria interact

    at the root-soil interface

  • Probing the future:

    Climate Change experiments

  • Soil is fundamental to human life

  • Tropical rainforests

    hold the key to global net primary productivity

TER News

Latest publications

Increase in fine root biomass enhances root exudation by long-term soil warming in a temperate forest

Trees can invest up to one-third of the carbon (C) fixed by photosynthesis into belowground allocation, including fine root exudation into the rhizosphere. It is still unclear how climate and soil warming affect tree root C exudation, in particular quantifying longer-term warming effects remains a challenge. In this study, using a C-free cuvette incubation method, in situ C exudation rates from tree fine roots of a mature spruce dominated temperate forest were measured in regular intervals during the 14th and 15th year of experimental soil warming (+ 4°C). In addition, a short-term temperature sensitivity experiment (up to + 10°C warming within 4 days) was conducted to determine the inherent temperature sensitivity of root exudation. Root exudation rates in the long-term warmed soil (17.9 μg C g–1 root biomass h–1) did not differ from those in untreated soil (16.2 μg C g–1 root biomass h–1). However, a clear increase (Q10 ∼5.0) during the short-term temperature sensitivity experiment suggested that fine root exudation can be affected by short-term changes in soil temperature. The absence of response in long-term warmed soils suggests a downregulation of C exudation from the individual fine roots in the warmed soils. The lack of any relationship between exudation rates and the seasonal temperature course, further suggests that plant phenology and plant C allocation dynamics have more influence on seasonal changes in fine root C exudation. Although exudation rates per g dry mass of fine roots were only marginally higher in the warmed soil, total fine root C exudation per m2 soil surface area increased by ∼30% from 0.33 to 0.43 Mg C ha–1 yr–1 because long-term soil warming has led to an increase in total fine root biomass. Mineralization of additional fine root exudates could have added to the sustained increase in soil CO2 efflux from the warmed forest soil at the experimental site.

Heinzle J, Liu X, Tian Y, Kengdo SK, Heinze B, Nirschi A, Borken W, Inselsbacher E, Wanek W, Schindlbacher A
2023 - Frontiers in Forests and Global Change, 6: Article 1152142

The change in metabolic activity of a large benthic foraminifera as a function of light supply

We studied metabolic activity of the symbiont-bearing large benthic foraminifer Heterostegina depressa under different light conditions. Besides the overall photosynthetic performance of the photosymbionts estimated by means of variable fluorescence, the isotope uptake (13C and 15N) of the specimens (= holobionts) was measured. Heterostegina depressa was either incubated in darkness over a period of 15 days or exposed to an 16:8 h light:dark cycle mimicking natural light conditions. We found photosynthetic performance to be highly related to light supply. The photosymbionts, however, survived prolonged darkness and could be reactivated after 15 days of darkness. The same pattern was found in the isotope uptake of the holobionts. Based on these results, we propose that 13C-carbonate and 15N-nitrate assimilation is mainly controlled by the photosymbionts, whereas 15N-ammonium and 13C-glucose utilization is regulated by both, the symbiont and the host cells.

Lintner M, Lintner B, Schagerl M, Wanek W, Heinz P
2023 - Scientific Reports, 13: Article 8240

Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies

Global warming impacts biogeochemical cycles in terrestrial ecosystems, but it is still unclear how the simultaneous cycling of carbon (C) and nitrogen (N) in soils could be affected in the longer-term. Here, we evaluated how 14 years of soil warming (+4 °C) affected the soil C and N cycle across different soil depths and seasons in a temperate mountain forest. We used H218O incorporation into DNA and 15N isotope pool dilution techniques to determine gross rates of C and N transformation processes. Our data showed different warming effects on soil C and N cycling, and these were consistent across soil depths and seasons. Warming decreased microbial biomass C (−22%), but at the same time increased microbial biomass-specific growth (+25%) and respiration (+39%), the potential activity of β-glucosidase (+31%), and microbial turnover (+14%). Warming reduced gross rates of protein depolymerization (−19%), but stimulated gross N mineralization (+63%) and the potential activities of N-acetylglucosaminidase (+106%) and leucine-aminopeptidase (+46%), and had no impact on gross nitrification (+1%). Microbial C and N use efficiencies were both lower in the warming treatment (−15% and −17%, respectively). Overall, our results suggest that long-term warming drives soil microbes to incorporate less C and N into their biomass (and necromass), and to release more inorganic C and N to the environment, causing lower soil C and N storage in this forest, as indicated by lower soil C and total N contents. The decreases in microbial CUE and NUE were likely triggered by increasing microbial P constraints in warmed soils, limiting anabolic processes and microbial growth and promoting pervasive losses of C and N from the soil.

Global warming impacts biogeochemical cycles in terrestrial ecosystems, but it is still unclear how the simultaneous cycling of carbon (C) and nitrogen (N) in soils could be affected in the longer-term. Here, we evaluated how 14 years of soil warming (+4 °C) affected the soil C and N cycle across different soil depths and seasons in a temperate mountain forest. We used H218O incorporation into DNA and 15N isotope pool dilution techniques to determine gross rates of C and N transformation processes. Our data showed different warming effects on soil C and N cycling, and these were consistent across soil depths and seasons. Warming decreased microbial biomass C (−22%), but at the same time increased microbial biomass-specific growth (+25%) and respiration (+39%), the potential activity of β-glucosidase (+31%), and microbial turnover (+14%). Warming reduced gross rates of protein depolymerization (−19%), but stimulated gross N mineralization (+63%) and the potential activities of N-acetylglucosaminidase (+106%) and leucine-aminopeptidase (+46%), and had no impact on gross nitrification (+1%). Microbial C and N use efficiencies were both lower in the warming treatment (−15% and −17%, respectively). Overall, our results suggest that long-term warming drives soil microbes to incorporate less C and N into their biomass (and necromass), and to release more inorganic C and N to the environment, causing lower soil C and N storage in this forest, as indicated by lower soil C and total N contents. The decreases in microbial CUE and NUE were likely triggered by increasing microbial P constraints in warmed soils, limiting anabolic processes and microbial growth and promoting pervasive losses of C and N from the soil.

 

Tian Y, Schindlbacher A, Urbina-Malo C, Shi C, Heinzle J, Kengdo SK, Inselsbacher E, Borken W, Wanek W
2023 - Soil Biology and Biochemistry, 184: Article 109109

Lecture series

Microbial ecology of nitrogen cycling in paddy soils

Yong-Guan Zhu
Research Centre for Eco-Environmental Sciences & Institute of Urban Environment, Chinese Academy of Sciences
27.06.2019
09:00 h
Lecture Hall HS 5, UZA2 (Geocentre), Althanstrasse 14, 1090 Vienna

How to meet the Paris 2°C target: Which are the main constraints that will need to be overcome?

Ivan Janssens
Centre of Excellence of Global Change Ecology, University of Antwerp, Belgium
15.11.2018
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna

Soil C dynamics –when are microbial communities in control?

Naoise Nunan
Institute of Ecology and Environmental Sciences IEES Paris, France
25.10.2018
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna