• Global Warming:

    the threat of a permafrost Carbon – climate feedback

  • We develop and improve

    stable isotopes techniques for ecological applications

  • Plants, fungi and bacteria interact

    at the root-soil interface

  • Probing the future:

    Climate Change experiments

  • Soil is fundamental to human life

  • Tropical rainforests

    hold the key to global net primary productivity

TER News

Latest publications

Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency

A longstanding assumption of glucose tracing experiments is that all glucose is microbially utilized during short incubations of ≤2 days to become microbial biomass or carbon dioxide. Carbon use efficiency (CUE) estimates have consequently ignored the formation of residues (non-living microbial products) although such materials could represent an important sink of glucose that is prone to stabilization as soil organic matter. We examined the dynamics of microbial residue formation from a short tracer experiment with frequent samplings over 72 h, and conducted a meta-analysis of previously published glucose tracing studies to assess the generality of these experimental results. Both our experiment and meta-analysis indicated 30–34% of amended glucose-C (13C or 14C) was in the form of residues within the first 6 h of substrate addition. We expand the conventional efficiency calculation to include residues in both the numerator and denominator of efficiency, thereby deriving a novel metric of the potential persistence of glucose-C in soil as living microbial biomass plus residues (‘carbon stabilization efficiency’). This new metric indicates nearly 40% of amended glucose-C persists in soil 180 days after amendment, the majority as non-biomass residues. Starting microbial biomass and clay content emerge as critical factors that positively promote such long term stabilization of labile C. Rapid residue production supports the conclusion that non-growth maintenance activity can illicit high demands for C in soil, perhaps equaling that directed towards growth, and that residues may have an underestimated role in the cycling and sequestration potential of C in soil.

Geyer K, Schnecker J, Grand AS, Richter A, Frey S
2020 - Biogeochemistry, in press

Letter to the Editor: Bypass and hyperbole in soil science: A perspective from the next generation of soil scientists

Portell X, Sauzet O, Balseiro‐Romero M, Benard P, Cardinael R, Couradeau E, Danra DD, Evans DL, Fry EL, Hammer EC, Mamba D, Merino‐Martín L, Mueller CW, Paradelo M, Rees F, Rossi LMW, Schmidt H, Schnee LS, Védère C, Vidal A
2020 - European Journal of Soil Science, in press

Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica

Tropical secondary forests comprise about half of the world’s tropical forests and are important as carbon sinks and to conserve biodiversity. Their rate of recovery varies widely; however, particularly older secondary forests are difficult to date so that the recovery rate is uncertain. As a consequence, factors affecting recovery are difficult to analyse. We used aerial surveys going back to 1968 to date 12 secondary forests in the wet tropics of SW Costa Rica and evaluated the recovery of aboveground biomass, tree species richness and tree species composition in relation to nearby old-growth forests and previous land use. To confirm the validity of the space-for-time substitution, the plots were re-censused after four years. We found fast rates of aboveground biomass accumulation, especially in the first years of succession. After 20 years AGB had reached c. 164 Mg/ha equivalent to 52% of the biomass in old-growth forests in the region. Species richness increased at a slower pace and had reached c. 31% of old-growth forests after 20 years. Recovery rates differed substantially among forests, with biomass at least initially recovering faster in forests after clearcuts whereas species numbers increased faster in forests recovering from pastures. Biomass recovery was positively related to the forest cover in the vicinity and negatively to species richness, whereas species richness was related to soil parameters. The change during the four years between the censuses is broadly in line with the initial chronosequence. While the recovery of tropical secondary forests has been studied in many places, our study shows that various environmental parameters affect the speed of recovery, which is important to include in efforts to manage and restore tropical landscapes.

Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P
2020 - Forest Ecology and Management, 479: Article 118580

Lecture series

Microbial ecology of nitrogen cycling in paddy soils

Yong-Guan Zhu
Research Centre for Eco-Environmental Sciences & Institute of Urban Environment, Chinese Academy of Sciences
27.06.2019
09:00 h
Lecture Hall HS 5, UZA2 (Geocentre), Althanstrasse 14, 1090 Vienna

How to meet the Paris 2°C target: Which are the main constraints that will need to be overcome?

Ivan Janssens
Centre of Excellence of Global Change Ecology, University of Antwerp, Belgium
15.11.2018
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna

Soil C dynamics –when are microbial communities in control?

Naoise Nunan
Institute of Ecology and Environmental Sciences IEES Paris, France
25.10.2018
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna