• Global Warming:

    the threat of a permafrost Carbon – climate feedback

  • We develop and improve

    stable isotopes techniques for ecological applications

  • Plants, fungi and bacteria interact

    at the root-soil interface

  • Probing the future:

    Climate Change experiments

  • Soil is fundamental to human life

  • Tropical rainforests

    hold the key to global net primary productivity

TER News

Latest publications

Widespread soil bacterium that oxidizes atmospheric methane

The global atmospheric level of methane (CH), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH from the atmosphere, but so far, bacteria that can grow on atmospheric CH have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH [1.86 parts per million volume (p.p.m.v.)]. This organism, named , is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH oxidation experiments and C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH aerobically and assimilates carbon from both CH and CO Its estimated specific affinity for CH (a) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed for and , close relatives with a lower specific affinity for CH, suggesting that the ability to utilize atmospheric CH for growth is more widespread than previously believed. The closed genome of MG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH and CO, and CO fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).

Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, von Bergen M, Herbold CW, Wagner M, Richter A, Svenning MM
2019 - Proceedings of the National Academy of Sciences of the United States of America (PNAS), 17: 8515-8524

Low yield and abiotic origin of NO formed by the complete nitrifier Nitrospira inopinata

Nitrous oxide (NO) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of NO and NO globally. However, nothing is known about NO and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to NO, and emits NO at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that NO formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less NO during nitrification than AOB.

Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H
2019 - Nature Communications, 1: Article 1836

Coupled carbon and nitrogen losses in response to seven years of chronic warming in subarctic soils

Increasing temperatures may alter the stoichiometric demands of soil microbes and impair their capacity to stabilize carbon (C) and retain nitrogen (N), with critical consequences for the soil C and N storage at high latitude soils. Geothermally active areas in Iceland provided wide, continuous and stable gradients of soil temperatures to test this hypothesis. In order to characterize the stoichiometric demands of microbes from these subarctic soils, we incubated soils from ambient temperatures after the factorial addition of C, N and P substrates separately and in combination. In a second experiment, soils that had been exposed to different in situ warming intensities (+0, +0.5, +1.8, +3.4, +8.7, +15.9 °C above ambient) for seven years were incubated after the combined addition of C, N and P to evaluate the capacity of soil microbes to store and immobilize C and N at the different warming scenarios. The seven years of chronic soil warming triggered large and proportional soil C and N losses (4.1 ± 0.5% °C−1 of the stocks in unwarmed soils) from the upper 10 cm of soil, with a predominant depletion of the physically accessible organic substrates that were weakly sorbed in soil minerals up to 8.7 °C warming. Soil microbes met the increasing respiratory demands under conditions of low C accessibility at the expenses of a reduction of the standing biomass in warmer soils. This together with the strict microbial C:N stoichiometric demands also constrained their capacity of N retention, and increased the vulnerability of soil to N losses. Our findings suggest a strong control of microbial physiology and C:N stoichiometric needs on the retention of soil N and on the resilience of soil C stocks from high-latitudes to warming, particularly during periods of vegetation dormancy and low C inputs.

Marañon-Jimenez S, Peñuelas J, Richter A, Sigurdsson BD, Fuchslueger L, Leblans NIW, Janssens IA
2019 - Soil Biology and Biochemistry, 134: 152-161

Lecture series

How to meet the Paris 2°C target: Which are the main constraints that will need to be overcome?

Ivan Janssens
Centre of Excellence of Global Change Ecology, University of Antwerp, Belgium
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna

Soil C dynamics –when are microbial communities in control?

Naoise Nunan
Institute of Ecology and Environmental Sciences IEES Paris, France
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna

When are Mycorrhizas Mutualisms?

Nancy Collins Johnson
Northern Arizona University, USA
16:15 h
Hörsaal 2 (UZA 1), Althanstraße 14, 1090 Wien