Publications in peer reviewed journals

53 Publications found
  • Growth of soil microbes is not limited by the availability of nitrogen and phosphorus in a Mediterranean oak-savanna

    Morris KA, Richter A, Migliavacca M, Schrumpf M
    2022 - Soil Biology and Biochemistry, 169: Article 108680


    The environmental conditions under which the availability of inorganic nutrients such as nitrogen (N) and phosphorus (P) influence soil microbial growth are poorly understood, especially with regards to how fertilization changes specific aspects of microbial growth such as carbon-use efficiency (CUE). Microbial CUE is the fraction of C converted into biomass out of all C taken in and plays a critical role in global C budgets. Using the 18O labeled water method we tested short vs. long-term effects of N and/or P fertilization on microbial growth, CUE, and C, N, and P-acquiring enzyme activities in two soils from an oak-savanna, which differ in their soil organic matter (SOM) content. We hypothesized that soils with more SOM (from under tree canopies) would have higher microbial growth rates than soils with less SOM (from open grassland), and that microbial growth and CUE would increase with fertilization. We further hypothesized that these increases would be associated with a decrease in enzyme activity and a shift towards older SOM substrates in the short-term, in contrast to substrates from recently fixed C resulting from increased plant productivity in the long-term. We found that nutrient additions did not affect microbial growth or CUE in the relatively high SOM habitat on either time scale. In contrast, the low SOM habitat had lower growth and CUE when single nutrients were added, with significantly reduced growth when P alone was added, but was unchanged when N and P were added together. Our results show that short-term, stoichiometric imbalances can reduce microbial growth and that microbial growth at this site is limited not by nutrients but by the amount of C available to soil microbes.

  • Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: an inter-laboratory comparison of three common measurement approaches

    Biasi C, Jokinen S, Prommer J, Ambus P, Dörsch P, Yu L, Granger S, Boeckx P, Van Nieuland K, Brüggemann N, Wissel H, Voropaev A, Zilberman T, Jäntti H, Trubnikova T, Welti N, Voigt C, Gebus-Czupyt B, Czupyt Z,  Wanek W
    2022 - Rapid Communications in Mass Spectrometry, 36: Article e9370



    Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3 and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking.


    Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3 and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM-N2O) or N2 (CM-N2), and (c) the denitrifier (DN) methods.


    The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2O performing superior for both NO3 and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3 and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered.


    The inconsistency among all methods and laboratories raises concern about reported δ15N values particularly from environmental samples.

  • Both abundant and rare fungi colonizing Fagus sylvatica ectomycorrhizal root-tips shape associated bacterial communities

    Dietrich M, Montesinos-Navarro A, Gabriel R, Strasser F, Meier DV, Mayerhofer W, Gorla S, Wiesenbauer J, Martin V, Weidinger M, Richter A, Kaiser C, Woebken D
    2022 - Communications Biology, 5: Article 1261


    Ectomycorrhizal fungi live in close association with their host plants and form complex interactions with bacterial/archaeal communities in soil. We investigated whether abundant or rare ectomycorrhizal fungi on root-tips of young beech trees (Fagus sylvatica) shape bacterial/archaeal communities. We sequenced 16S rRNA genes and fungal internal transcribed spacer regions of individual root-tips and used ecological networks to detect the tendency of certain assemblies of fungal and bacterial/archaeal taxa to inhabit the same root-tip (i.e. modularity). Individual ectomycorrhizal root-tips hosted distinct fungal communities associated with unique bacterial/archaeal communities. The structure of the fungal-bacterial/archaeal association was determined by both, dominant and rare fungi. Integrating our data in a conceptual framework suggests that the effect of rare fungi on the bacterial/archaeal communities of ectomycorrhizal root-tips contributes to assemblages of bacteria/archaea on root-tips. This highlights the potential impact of complex fine-scale interactions between root-tip associated fungi and other soil microorganisms for the ectomycorrhizal symbiosis.

  • Effect of light on the metabolism of the foraminifera Cribroelphidium selseyense lacking photosymbionts and kleptoplasts

    Lintner M, Schagerl M, Lintner B, Wanek W, Keul N, Heinz P
    2022 - Journal of Photochemistry and Photobiology, 11: Article 100133


    Foraminifera are essential contributors to the marine carbon and nitrogen cycle. A small group of foraminifera hosts symbiotic microalgae and kleptoplasts and irradiance is a key variable influencing their metabolism. However, the majority of foraminifera is fully heterotrophic, and whether irradiance influences food ingestion patterns has remained an open question. We studied the food uptake of fully heterotrophic Cribroelphidium selseyense specimens exposed to varying light-dark cycles. Specimens obtained from the Baltic Sea were fed with lyophilised, isotopically labelled diatoms from the species of Phaeodactylum triconutum, to estimate the rate of food ingestion. We exposed the specimens to different light-dark cycles (0:24, 8:16, 16:8, 24:0 = light: dark) and irradiance intensities (0, 50, 100 and 200 µmol photons m−2 s−1) in this experiment. Differences in light-dark regime did not affect the food uptake rates of C. selseyense. Irradiance intensity, however, strongly affected food uptake, increasing with incubation time from day 1 to day 15. In parallel, the food uptake decreased with higher irradiance intensity. Therefore, we can conclude irradiance intensity and not the light-dark cycle affected food uptake of fully heterotrophic C. selseyense, leaving the mechanisms of how light intensity regulates food intake being unresolved yet.

  • Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma

    Schmoll M, Hinterdobler W
    2022 - Progress in Molecular Biology and Translational Science, 1: 65-97


    Sensing the environment and interpretation of the received signals are crucial competences of living organisms in order to properly adapt to their habitat, succeed in competition and to reproduce. G-protein coupled receptors (GPCRs) are members of a large family of sensors for extracellular signals and represent the starting point of complex signaling cascades regulating a plethora of intracellular physiological processes and output pathways in fungi. In Trichoderma spp. current research involves a wide range of topics from enzyme production, light response and secondary metabolism to sexual and asexual development as well as biocontrol, all of which require delicate balancing of resources in response to the environmental challenges or biotechnological needs at hand, which are crucially impacted by the surroundings of the fungi and their intercellular signaling cascades triggering a precisely tailored response. In this review we summarize recent findings on sensing by GPCRs in Trichoderma, including the function of pheromone receptors, glucose sensing by CSG1 and CSG2, regulation of secondary metabolism by GPR8 and impacts on mycoparasitism by GPR1. Additionally, we provide an overview on structural determinants, posttranslational modifications and interactions for regulation, activation and signal termination of GPCRs in order to inspire future in depth analyses of their function and to understand previous regulatory outcomes of natural and biotechnological processes modulated or enabled by GPCRs.

  • Long-term warming reduced microbial biomass but increased recent plant-derived C in microbes of a subarctic grassland

    Verbrigghe N, Meeran K, Bahn M, Canarini A, Fransen E, Fuchslueger L, Ingrisch J, Janssens IA, Richter A, Sigurdsson BD, Soong JL, Vicca S
    2022 - Soil Biology and Biochemistry, 167: Article 108590


    Long-term soil warming and nitrogen (N) availability have been shown to affect microbial biomass and community composition. Altered assimilation patterns of recent plant-derived C and changes in soil C stocks following warming as well as increased N availability are critical in mediating the direction and magnitude of these community shifts. A 13C pulse labelling experiment was done on a warming gradient in an Icelandic grassland (Sigurdsson et al., 2016), to investigate the role of recent plant-derived C and warming on the microbial community structure and size. We observed an overall increase of microbial 13C (e.g., root-exudate) uptake, while warming led to significant microbial biomass loss in all microbial groups. The increase of microbial 13C uptake with warming differed between microbial groups: an increase was only observed in the general and Gram-positive bacterial phospholipid fatty acid (PLFA) markers and in the PLFA and neutral lipid fatty acid (NLFA) markers of arbuscular mycorrhizal fungi (AMF). Nitrogen addition of 50 kg ha−1 y−1 for two years had no effect on the microbial uptake, microbial biomass or community composition, indicating that microbes were not N limited, and no plant-mediated N addition effects occurred. Additionally, we show that both warming and soil C depletion were responsible for the microbial biomass loss. Soil warming caused stronger loss in microbial groups with higher 13C uptake. In our experiment, warming caused a general reduction of microbial biomass, despite a relative increase in microbial 13C uptake, and altered microbial community composition. The warming effects on microbial biomass and community composition were partly mediated through soil C depletion with warming and changes in recent plant-derived C uptake patterns of the microbial community.

  • Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Pétrola Lake, SE Spain)

    Sanz D, Valiente N, Dountcheva I, Muñoz-Martín A, Cassiraga E, Gómez-Alday JJ
    2022 - Hydrogeology Journal, 30: 975-988


    Pétrola Lake in southeast Spain is one of the most representative examples of hypersaline wetlands in southern Europe. The rich ecosystem and environmental importance of this lake are closely associated with the hydrogeological behaviour of the system. The wetland is fed by the underlying aquifer with relatively fresh groundwater—1 g L−1 of total dissolved solids (TDS)—with a centripetal direction towards the wetland. In addition, the high evaporation rates of the region promote an increase in the concentration of salts in the lake water, occasionally higher than 80 g L−1 TDS. The density difference between the superficial lake water and the regional groundwater can reach up to 0.25 g cm−3, causing gravitational instability and density-driven flow (DDF) under the lake bottom. The objective of this study was to gain an understanding of the geometry of the freshwater–saltwater interface by means of two-dimensional mathematical modelling and geophysical-resistivity-profile surveys. The magnitude and direction of mixed convective flows, generated by DDF, support the hypothesis that the autochthonous reactive organic matter produced in the lake by biomass can be transported effectively towards the freshwater–saltwater interface areas (e.g. springs in the lake edge), where previous research described biogeochemical processes of natural attenuation of nitrate pollution.

  • Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils

    Dao TT, Mikutta R, Sauheitl L, Gentsch N, Shibistova O, Wild B, Schnecker J, Barta J, Capek P, Gittel A, Lashchinskiy N, Urich T, Santruckova H, Richter A, Guggenberger G
    2022 - JGR Biogeosciences, 127: Article e2020JG00618


    Permafrost-affected soils in the northern circumpolar region store more than 1,000 Pg soil organic carbon (OC), and are strongly vulnerable to climatic warming. However, the extent to which changing soil environmental conditions with permafrost thaw affects different compounds of soil organic matter (OM) is poorly understood. Here, we assessed the fate of lignin and non-cellulosic carbohydrates in density fractionated soils (light fraction, LF vs. heavy fraction, HF) from three permafrost regions with decreasing continentality, expanding from east to west of northern Siberia (Cherskiy, Logata, Tazovskiy, respectively). In soils at the Tazovskiy site with thicker active layers, the LF showed smaller OC-normalized contents of lignin-derived phenols and plant-derived sugars and a decrease of these compounds with soil depth, while a constant or even increasing trend was observed in soils with shallower active layers (Cherskiy and Logata). Also in the HF, soils at the Tazovskiy site had smaller contents of OC-normalized lignin-derived phenols and plant-derived sugars along with more pronounced indicators of oxidative lignin decomposition and production of microbial-derived sugars. Active layer deepening, thus, likely favors the decomposition of lignin and plant-derived sugars, that is, lignocelluloses, by increasing water drainage and aeration. Our study suggests that climate-induced degradation of permafrost soils may promote carbon losses from lignin and associated polysaccharides by abolishing context-specific preservation mechanisms. However, relations of OC-based lignin-derived phenols and sugars in the HF with mineralogical properties suggest that future OM transformation and carbon losses will be modulated in addition by reactive soil minerals.

  • Screening for genes involved in cellulase regulation by expression under the control of a novel constitutive promoter in Trichoderma reesei

    Beier S, Stiegler M, Hitzenhammer E, Schmoll M
    2022 - Current Research in Biotechnology, 4: 238-246


    The filamentous ascomycete Trichoderma reesei is a biotechnological workhorse used in the production of homologous and heterologous proteins for diverse applications including biofuel production, textile finishing and food additives. This fungus uses a complex adaptation machinery to regulate its cellulases in response to environmental conditions. Detailed understanding of this regulation allows for improvement of enzyme production using the strong enzyme gene promotors. Here, we selected six genes with characteristic transcript levels associated with cellulase production to be tested for their enzyme regulatory function. Machine learning for inference of a gene regulatory network (GRN) was applied to support the association of these genes with cellulase induction. Additionally, we screened available transcriptomic data for genes with strong constitutive transcript levels and selected the promoter of the gene cfe1, whose transcript levels were above those of tef1 and cDNA1 and near those of cbh1, for gene overexpression testing. Using this promoter, we explored the relevance to cellulose degradation efficiency of three transporters, two ferric reductases and one gene of unknown function, which were overexpressed in T. reesei grown on cellulose. This promoter enabled up to 400 fold overexpression and yielded transcript levels above those of tef1 or cDNA1. We provide evidence of effects of a ferric reductase, an ammonium permease and a gene of unknown function on the regulatory machinery of cellulase expression in T. reesei. In summary we identified the cfe1 promoter, a novel constitutive promoter with promising efficiency, as well as three genes relevant to cellulase regulation in T. reesei.

  • The Impacts of Post-Fire Straw Mulching and Salvage Logging on Soil Properties and Plant Diversity in a Mediterranean Burned Pine Forest

    ortega R, Zema DA, Valiente N, Soria R, Miralles I, Lucas-Borja ME
    2022 - Forests, 13: Article 1580


    In the Mediterranean forests, wildfires and post-fire management actions may degrade soil properties and negatively impact vegetation characteristics. These effects may reduce soil functionality and result in loss of plant diversity. Although straw mulching and salvage logging are commonly carried out in burned forests, their impacts on respiration of forest soils as well as on species richness and evenness of forest plants have been little explored. To fill these gaps, this study has evaluated the soil respiration, different soil physico-chemical properties, as well as plant diversity in a forest of Castilla La Mancha (Central Eastern Spain), burned by a wildfire and then subjected alternatively to salvage logging or straw mulching or to both techniques. Compared to the unburned soils, immediately after the fire mulching and salvage logging alone increased (+146%) and reduced the soil respiration (−9%), respectively, the latter especially in combination with mulching. However, these differences decreased over time, and the mulched and non-logged areas always showed the maximum soil respiration. The post-fire treatments also significantly influenced the main physico-chemical properties of the experimental soils. No evident changes were found for the pH of the logged and mulched soils compared to the control. Mulching coupled with logging did not modify the OM increase due to fire, while the lowest increase was measured in the logged but non-mulched areas. Mulched and non-logged soils maintained high OM and TN one year after fire, but also in areas that were treated with logging (with or without mulching) these parameters were significantly higher compared to the unburned areas. Mulching increased the species richness and evenness, especially when itis carried out without logging, in comparison to the unburned areas. Logging without mulching did not exert negative impacts on plant biodiversity, whose species richness increased and evenness was unvaried compared to the burned and unburned areas. The results of this study can provide land managers easy to measure tools such as soil respiration and plant diversity, which can serve to assess and evaluate the effectiveness of management measures that are taken post-forest fire in order to conserve the delicate ecosystems of the Mediterranean forests.

  • Decay of similarity across tropical forest communities: integrating spatial distance with soil nutrients

    Peguero G, Ferrín M, Sardans J, Verbruggen E, Ramírez-Rojas I, Van Langenhove L, Verryckt LT, Murienne J, Iribar A, Zinger L, Grau O, Orivel J, Stahl C, Courtois EA, Asensio D, Gargallo-Garriga A, Llusià J, Margalef O, Ogaya R, Richter A, Janssens IA, Peñuelas J
    2022 - Ecology, 103: Article e03599


    Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance−decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.

  • Soil greenhouse gas fluxes in floodplain forests of the Danube National Park – Effects of flooding and soil microclimate

    Schindlbacher A, Heinzle J, Gollobich G, Wanek W, Michel K, Kitzler K
    2022 - Biogeochemistry, 159: 193-213


    The relevance of soil greenhouse gas (GHG) fluxes from temperate floodplain forests has yet remained elusive. We studied the soil methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) dynamics at three forest sites along a flooding gradient in the Danube National Park (Austria) to estimate annual GHG budgets and to assess if and how seasonal flooding affects individual GHG fluxes. Soil surface GHG fluxes were determined along with GHG concentrations in soil air and pore-water at a non-flooded (NF), an infrequently-flooded (IF), and a frequently-flooded (FF) site. Both study years were characterized by dry summers, and only the FF site was flooded during the study period. Soils at all sites were annual CH4 sinks (NF: − 4.50 ± 0.85, IF: − 2.54 ± 0.57, FF: − 0.67 ± 1.06 kg CH4-C ha−1 year−1) and the sink strength correlated positively with soil moisture. Pulse-like CH4 emissions were not observed during or after flooding. Soil N2O fluxes showed large temporal and spatial variations, without any significant differences between sites (average NF: 6.5 ± 7.1, IF: 10.4 ± 14.3, FF: 9.4 ± 10.5 µg N2O-N m−2 h−1). Pulse N2O emissions (up to ~ 80 µg N2O-N m−2 h−1) occurred during freeze/thaw events, but not during or after flooding. Mean annual soil CO2 effluxes at NF and IF were 9.4 ± 1.1 and 9.4 ± 2.1 t C ha−1 year−1, respectively. Soil CO2 efflux was significantly higher at the FF site (18.54 ± 6.21 t C ha−1 year−1). High soil air CO2 concentrations (> 10%) in aerated deeper soil layers indicated a substantial contribution of the usually waterlogged sub-soils to the summertime soil CO2 efflux at the FF site. Overall, our results suggest that the studied temperate floodplain forest soils do not absorb/emit substantially more CH4 and N2O than soils of comparable upland forests, whereas low groundwater level can lead to periodically enhanced CO2 emissions from normally waterlogged soil layers.

  • Harnessing belowground processes for sustainable intensification of agricultural systems

    Oburger E, Schmidt H, Staudinger C
    2022 - Plant and soil, 478: 177-209


    Increasing food demand coupled with climate change pose a great challenge to agricultural systems. In this review we summarize recent advances in our knowledge of how plants, together with their associated microbiota, shape rhizosphere processes. We address (molecular) mechanisms operating at the plant–microbe-soil interface and aim to link this knowledge with actual and potential avenues for intensifying agricultural systems, while at the same time reducing irrigation water, fertilizer inputs and pesticide use. Combining in-depth knowledge about above and belowground plant traits will not only significantly advance our mechanistic understanding of involved processes but also allow for more informed decisions regarding agricultural practices and plant breeding. Including belowground plant-soil-microbe interactions in our breeding efforts will help to select crops resilient to abiotic and biotic environmental stresses and ultimately enable us to produce sufficient food in a more sustainable agriculture in the upcoming decades.

  • Ozone modified hypothalamic signaling enhancing thermogenesis in the TDP-43A315T transgenic model of Amyotrophic Lateral Sclerosis

    Rodríguez-Sánchez S, Valiente N, Seseña S, Cabrera-Pinto M, Rodríguez A, Aranda A, Palop L, Fernández-Martos CM
    2022 - Scientific Reports, 12: Article 20814


    Amyotrophic lateral sclerosis (ALS), a devastating progressive neurodegenerative disease, has no effective treatment. Recent evidence supports a strong metabolic component in ALS pathogenesis. Indeed, metabolic abnormalities in ALS correlate to disease susceptibility and progression, raising additional therapeutic targets against ALS. Ozone (O3), a natural bioactive molecule, has been shown to elicit beneficial effects to reduce metabolic disturbances and improved motor behavior in TDP-43A315T mice. However, it is fundamental to determine the mechanism through which O3 acts in ALS. To characterize the association between O3 exposure and disease-associated weight loss in ALS, we assessed the mRNA and protein expression profile of molecular pathways with a main role in the regulation of the metabolic homeostasis on the hypothalamus and the brown adipose tissue (BAT) at the disease end-stage, in TDP-43A315T mice compared to age-matched WT littermates. In addition, the impact of O3 exposure on the faecal bacterial community diversity, by Illumina sequencing, and on the neuromuscular junctions (NMJs), by confocal imaging, were analysed. Our findings suggest the effectiveness of O3 exposure to induce metabolic effects in the hypothalamus and BAT of TDP-43A315T mice and could be a new complementary non-pharmacological approach for ALS therapy.

  • Negative priming of soil organic matter following long-term in situ warming of sub-arctic soils

    Verbrigghe N, Meeran K, Bahn M, Fuchslueger L, Janssens IA, Richter A, Sigurdsson BD, Soong JL, Vicca A
    2022 - Geoderma, 410: Article 115652


    Priming is the change of microbial soil organic matter (SOM) decomposition induced by a labile carbon (C) source. It is recognised as an important mechanism influencing soil C dynamics and C storage in terrestrial ecosystems. Microbial nitrogen (N) mining in SOM and preferential substrate utilisation, i.e., a shift in microbial carbon use from SOM to more labile energy sources, are possible, counteracting, mechanisms driving the priming effect. Climate warming and increased N availability might affect these mechanisms, and thus determine the direction and magnitude of the priming effect. Hence, these abiotic factors can indirectly affect soil C stocks, which makes their understanding crucial for predicting the soil C feedback in a warming world. We conducted a short-term incubation experiment (6 days) with soils from a subarctic grassland that had been subjected to long-term geothermal warming (

    >55 years) by 2-4°C above unwarmed soil. Soil samples were amended with 13C-labelled glucose and 15N-labelled NH4NO3. We found a significantly negative relationship between in situ warming and cumulative primed C, with negative priming in the warmed soils. The negative priming suggests that preferential substrate utilisation was a key mechanism in our experiment. Our results indicate that changes in SOM characteristics associated with the in situ warming gradient can play a major role in determining the rate and direction of the priming effect. Additionally, we found that neither microbial N limitation nor N addition affected the priming effect, providing evidence that in our experiment, N mining did not lead to positive priming.

  • Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming

    Walker TWN, Gavazov K, Guillaume T, Lambert T, Mariotte P, Routh D, Signarbieux C, Block S, Münkemüller T, Nomoto H, Crowther TW, Richter A, Buttler A, Alexander JM
    2022 - eLife, 11: Article e78555


    Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here, we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% confidence intervals) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration, and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.

  • Negative erosion and negative emissions: Combining multiple land-based carbon dioxide removal techniques to rebuild fertile topsoils and enhance food production

    Janssens IA, Roobroeck D, Sardans J, Obersteiner M, Peñuelas J, Richter A, Smith P, Verbruggen E, Vicca S
    2022 - Frontiers in Climate, 4: Article 928403


    Carbon dioxide removal (CDR) that increases the area of forest cover or bio-energy crops inherently competes for land with crop and livestock systems, compromising food security, or will encroach natural lands, compromising biodiversity. Mass deployment of these terrestrial CDR technologies to reverse climate change therefore cannot be achieved without a substantial intensification of agricultural output, i.e., producing more food on less land. This poses a major challenge, particularly in regions where arable land is little available or severely degraded and where agriculture is crucial to sustain people's livelihoods, such as the Global South. Enhanced silicate weathering, biochar amendment, and soil carbon sequestration are CDR techniques that avoid this competition for land and may even bring about multiple co-benefits for food production. This paper elaborates on the idea to take these latter CDR technologies a step further and use them not only to drawdown CO2 from the atmosphere, but also to rebuild fertile soils (negative erosion) in areas that suffer from pervasive land degradation and have enough water available for agriculture. This way of engineering topsoil could contribute to the fight against malnutrition in areas where crop and livestock production currently is hampered by surface erosion and nutrient depletion, and thereby alleviate pressure on intact ecosystems. The thrust of this perspective is that synergistically applying multiple soil-related CDR strategies could restore previously degraded soil, allowing it to come back into food production (or become more productive), potentially alleviating pressure on intact ecosystems. In addition to removing CO2 from the atmosphere, this practice could thus contribute to reducing poverty and hunger and to protection of biodiversity.

  • From diversity to complexity: Microbial networks in soils

    Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C
    2022 - Soil Biology and Biochemistry, 169: Article 108604


    Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing microbial networks in soils opens a window to a better understanding of the complexity of microbial communities. However, this approach is unfortunately often used to draw conclusions which are far beyond the scientific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at the same time raise awareness regarding its limitations and the many ways how it can be misused or misinterpreted.

  • Extracellular enzyme stoichiometry reflects the metabolic C-and P-limitations along a grassland succession on the Loess Plateau in China

    Xue Z, Liu C, Zhou Z, Wanek W
    2022 - Applied Soil Ecology, 179: Article 104594


    Soil extracellular enzyme stoichiometry (EES) reflects the biogeochemical balance between microbial metabolic requirements and environmental nutrient availability. Recent research suggests that EES well effect on soil microbial metabolic limitations (SMMLs), however, few field studies have explicitly tested this based on a herbaceous successional chronosequence. We used the EES models to identify the response of SMMLs, and investigated the potential implications of microbial nutritional limitations across the time series (herbaceous succession) and space (transformation interface soil [TIS] and underlying topsoil [UTS] layer) in the grassland restoration series. We show that soil microorganisms were generally limited by C, both in the TIS and UTS. Microbial C-limitation exhibited a unimodal direction, peaking in intermediate successional stages, however, P-limitation presented the opposite trend. During herbaceous succession, microbial P-limitation was more substantial than that in N-limitation. SMMLs gradually transferred from P- to N- and back to P-limitation at later successional stages in the TIS layer. Furthermore, we demonstrate that biotic factors, soil basic index, and soil nutrients explained 92.2 % of the variations in microbial C-limitation and 84.4 % of the variations in microbial P-limitation. Multi–interaction factors exhibited the most significant relative influences of 65.11 % (TIS) and 43 % (UTS) on the SMMLs. Microbial C-limitation was induced by the imbalance between C supply and microbial C demand, whereas the changes in microbial P-limitation were due to the changes in the competition for P between plants and microorganisms. Overall, our findings provide support for microbial C- and P-limitation in the process of herbaceous succession during the restoration. We also highlight the possibility of additive effects on soil SMMLs via interactions of vegetation composition, soil properties, and microbial nutritional demands, which might constrain soil microbial metabolism requirements despite greater living root and litter resource inputs.

  • Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture

    Schalamun M, Schmoll M
    2022 - Front. Fungal Biol., 3: Article 1002161


    The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.

  • Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

    Verbrigghe N, Leblans NIW, Sigurdsson BD, Vicca S, Fang C, Fuchslueger L, Soong JL, Weedon JT, Poeplau C, Ariza-Carricondo C, Bahn M, Guenet B, Gundersen P, Gunnarsdóttir GE, Kätterer T, Liu Z, Maljanen M, Marañon-Jimenez S, Meeran K, Oddsdóttir ES, Ostonen I, Peñuelas J, Richter A, Sardans J, Sigurðsson P, Torn MS, Van Bodegom PM, Verbruggen E, Walker TWN, Wallander H, Janssens IA
    2022 - Biogeosciences, 19: 3381-3393


    Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils (Ilyina and Friedlingstein2016Shi et al.2018). Using natural geothermal soil warming gradients of up to +6.4C in subarctic grasslands (Sigurdsson et al.2016), we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (−2.8 t ha−1C−1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (>50 years) warming revealed that all SOC stock reduction occurred within the first 5 years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon–climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions and that SOC stock reduction was only visible in topsoil (0–10 cm). SOC stocks in subsoil (10–30 cm), where plant roots were absent, showed apparent conservation after >50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies.

  • Agricultural management affects active carbon and nitrogen mineralisation potential in soils

    Hendricks S, Zechmeister­‐Boltenstern S, Kandeler E, Sandén T, Díaz-Pinés E, Schnecker J, Alber O, Miloczki J, Spiegel H
    2022 - Journal of Plant Nutrition and Soil Science, 185: 513-528



    Soil organic matter (SOM) is important for soil fertility and climate change mitigation. Agricultural management can improve soil fertility and contribute to climate change mitigation by stabilising carbon in soils. This calls for cost-effective parameters to assess the influence of management practices on SOM contents.


    The current study aimed at understanding how sensitively the parameters active carbon (AC) and nitrogen mineralisation potential (NMP) react to different agricultural management practices compared to total organic carbon (TOC) and total nitrogen (Nt). We aimed to gain a better understanding of SOM processes, mainly regarding depth distribution and seasonality of SOM dynamics using AC and NMP.


    We looked mainly at four parameters, namely permanganate oxidisable carbon (AC), nitrogen minerlaisation potential (NMP), total organic carbon (TOC) and total nitrogen (Nt). Data were obtained in five long-term field experiments (LTEs) testing four management practices: (1) tillage, (2) compost application, (3) crop residue management, and (4) mineral fertilization.


    AC was specifically sensitive in detecting the effect of tillage treatment at different soil depths. NMP differentiated between all different tillage treatments in the upper soil layer, it showed the temporal dynamics between the years in the compost LTE, and it was identified as an early detection property in the crop residue LTE. Both AC and NMP detected short-term fluctuations better than TOC and Nt over the course of two years in the crop residue LTE.


    We suggest that AC and NMP are two valuable soil biochemical parameters providing more detailed information on C and N dynamics regarding depth distribution and seasonal dynamics and react more sensitively to different agricultural management practices compared to TOC and Nt. They should be integrated in monitoring agricultural long-term experiments (LTEs) and in field analyses conducted by farmers. However, when evaluating results towards long-term carbon storage, their sensitivity toward annual fluctuations should be taken into account.

  • Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO, warming, and drought

    Maxwell TL, Canarini A, Bogdanovic I, Böckle T, Martin V, Noll L, Prommer J, Séneca J, Simon E, Piepho HP, Herndl M, Pötsch EM, Kaiser C, Richter A, Bahn M, Wanek W
    2022 - Global Change Biology, 28: 2425-2441


    Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2, and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15N isotope pool dilution techniques. Whereas eCO2 showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.

  • Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment

    Speetjens NJ, Tanski G, Martin V, Wagner J, Richter A, Hugelius G, Boucher C, Lodi R, Knoblauch C, Koch BP, Wünsch U, Lantuit H, Vonk JE
    2022 - Biogeosciences, 19: 3073-3097


    Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter pool. Part of this mobilized terrestrial organic matter enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized organic matter is an important source of nutrients for ecosystems, as it is available for microbial breakdown, and thus a source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large Arctic rivers. Yet, these processes remain systematically understudied in small, high-Arctic watersheds, despite the fact that these watersheds experience the strongest warming rates in comparison. Here, we sampled soil (active layer and permafrost) and water (porewater and stream water) from a small ice wedge polygon (IWP) catchment along the Yukon coast, Canada, during the summer of 2018. We assessed the organic carbon (OC) quantity (using dissolved (DOC) and particulate OC (POC) concentrations and soil OC content), quality (δ13C DOC, optical properties and source apportionment) and bioavailability (incubations; optical indices such as slope ratio, Sr; and humification index, HIX) along with stream water properties (temperature, T; pH; electrical conductivity, EC; and water isotopes). We classify and compare different landscape units and their soil horizons that differ in microtopography and hydrological connectivity, giving rise to differences in drainage capacity. Our results show that porewater DOC concentrations and yield reflect drainage patterns and waterlogged conditions in the watershed. DOC yield (in mg DOC g−1 soil OC) generally increases with depth but shows a large variability near the transition zone (around the permafrost table). Active-layer porewater DOC generally is more labile than permafrost DOC, due to various reasons (heterogeneity, presence of a paleo-active-layer and sampling strategies). Despite these differences, the very long transport times of porewater DOC indicate that substantial processing occurs in soils prior to release into streams. Within the stream, DOC strongly dominates over POC, illustrated by 

     ratios around 50, yet storm events decrease that ratio to around 5. Source apportionment of stream DOC suggests a contribution of around 50 % from permafrost/deep-active-layer OC, which contrasts with patterns observed in large Arctic rivers (12 ± 8 %; Wild et al., 2019). Our 10 d monitoring period demonstrated temporal DOC patterns on multiple scales (i.e., diurnal patterns, storm events and longer-term trends), underlining the need for high-resolution long-term monitoring. First estimates of Black Creek annual DOC (8.2 ± 6.4 t DOC yr−1) and POC (0.21 ± 0.20 t yr−1) export allowed us to make a rough upscaling towards the entire Yukon Coastal Plain (34.51 ± 2.7 kt DOC yr−1 and 8.93 ± 8.5 kt POC yr−1). Rising Arctic temperatures, increases in runoff, soil organic matter (OM) leaching, permafrost thawing and primary production are likely to increase the net lateral OC flux. Consequently, altered lateral fluxes may have strong impacts on Arctic aquatic ecosystems and Arctic carbon cycling.

  • Reverse microdialysis: A window into root exudation hotspots

    König A, Wiesenbauer J, Gorka S, Marchand L, Kitzler B, Inselsbacher E, Kaiser C
    2022 - Soil Biology and Biochemistry, 174: Article 108829


    Plant roots release a variety of low-molecular weight compounds, such as sugars, amino acids or organic acids into the soil, impacting microbial activities and physico-chemical soil processes in their surroundings. These compounds are a source of easily available Carbon (C) and energy for soil microbes, potentially accelerating microbial decomposition of soil organic matter in the immediate vicinity of roots. However, knowledge about processes in root exudation hotspots remains limited due to experimental difficulties in investigating such hotspots in soil.

    Microdialysis, a passive sampling technique based on diffusion, has been successfully used to collect soil solutes at small spatial scales. Reverse microdialysis, also termed retrodialysis, can be used to introduce solutes into the soil, mimicking passive root exudation. However, little is known about the dynamics of substances released by passive diffusion into intact soil, a crucial prerequisite for applying reverse microdialysis to study root exudation hotspots in undisturbed soils.

    Here, we used reverse microdialysis to investigate the spatial and temporal dynamics of thirteen different organic compounds passively introduced into two different intact soils. Diffusion of compounds into soils was substantially lower than into water, and was not – as in water – determined by molecular size. Interestingly, butyrate, oxalate and propionate showed the highest diffusive fluxes into soil combined with the lowest rate of back retrieval after input, indicating that they were quickly removed from the soil solution by biotic or abiotic processes. In contrast, glucose and fructose unexpectedly accumulated around the membrane after input without removal. Furthermore, diffusive fluxes of compounds into soils showed a fluctuating temporal pattern, which may be explained by an observed 2-h delay of microbial respiration of added 13C-labelled compounds. During the course of 12 days, approximately one third of 13C-labelled compounds introduced into soil was respired while 8% ended up in microbial biomass.

    Our results demonstrate that introducing compounds into intact soil triggers complex biotic and abiotic responses at the time scale of hours. Reverse microdialysis proved to be an excellent tool to investigate such responses as well as the dynamics and metabolic consequences of passively released compounds into intact soil, and – in combination with 13C labelled substrate and respiration measurements - to shed light on potential priming effects that may be triggered by them.

  • Putting vascular epiphytes on the traits map

    Hietz P, Wagner K, Nunes Ramos F, Cabral J, Agudelo C, Benavides AM, Cach-Pérez MJ, Cardelús C, Chilpa Galván N, Costa L, de Paula Oliveira R, Einzmann H, Farias R, Guzmán JV, Kattge J, Kessler M, Kirby C, Kreft H, Kromer T, Males J, Monsalve Correa S, Moreno-Chacón M, Petter G, Reyes-Garcia C, Saldana A, Schellenberger Costa D, Taylor A, Velázquez Rosas N, Wanek W, Woods C, Zotz G
    2022 - Journal of Ecology, 110: 340-358


    1. Plant functional traits impact the fitness and environmental niche of plants. Major plant functional types have been characterized by their trait spectrum, and the environmental and phylogenetic imprints on traits have advanced several ecological fields. Yet, very few trait data on epiphytes, which represent almost 10% of vascular plants, are available.
    2. We collated 76,561 trait observations for 2,882 species of vascular epiphytes and compared these to non-epiphytic herbs and trees to test hypotheses related to how the epiphytic habit affects traits, and if epiphytes occupy a distinct region in the global trait space. We also compared variation in traits among major groups of epiphytes, and investigated the coordination of traits in epiphytes, ground-rooted herbs and trees.
    3. Epiphytes differ from ground-rooted plants mainly in traits related to water relations. Unexpectedly, we did not find lower leaf nutrient concentrations, except for nitrogen. Mean photosynthetic rates are much lower than in ground-rooted plants and lower than expected from the nitrogen concentrations. Trait syndromes clearly distinguish epiphytes from trees and from most non-epiphytic herbs.
    4. Among the three largest epiphytic taxa, orchids differ from bromeliads and ferns mainly by having smaller and more numerous stomata, while ferns differ from bromeliads by having thinner leaves, higher nutrient concentrations, and lower water content and water use efficiency.
    5. Trait networks differ among epiphytes, herbs and trees. While all have central nodes represented by SLA and mass-based photosynthesis, in epiphytes, traits related to plant water relations have stronger connections, and nutrients other than potassium have weaker connections to the remainder of the trait network. Whereas stem-specific density reflects mechanical support related to plant size in herbs and trees, in epiphytes it mostly reflects water storage and scales with leaf water content.
    6. Synthesis. Our findings advance our understanding of epiphyte ecology, but we note that currently mainly leaf traits are available. Important gaps are root, shoot and whole plant, demographic and gas exchange traits. We suggest how future research might use available data and fill data gaps.
    • We collated 76,561 trait observations for 2,882 species of vascular epiphytes and compared these to non-epiphytic herbs and trees to test hypotheses related to how the epiphytic habit affects traits, and if epiphytes occupy a distinct region in the global trait space. We also compared variation in traits among major groups of epiphytes, and investigated the coordination of traits in epiphytes, ground-rooted herbs and trees.
    • Epiphytes differ from ground-rooted plants mainly in traits related to water relations. Unexpectedly, we did not find lower leaf nutrient concentrations, except for nitrogen. Mean photosynthetic rates are much lower than in ground-rooted plants and lower than expected from the nitrogen concentrations. Trait syndromes clearly distinguish epiphytes from trees and from most non-epiphytic herbs.
    • Among the three largest epiphytic taxa, orchids differ from bromeliads and ferns mainly by having smaller and more numerous stomata, while ferns differ from bromeliads by having thinner leaves, higher nutrient concentrations, and lower water content and water use efficiency.
    • Trait networks differ among epiphytes, herbs and trees. While all have central nodes represented by SLA and mass-based photosynthesis, in epiphytes, traits related to plant water relations have stronger connections, and nutrients other than potassium have weaker connections to the remainder of the trait network. Whereas stem-specific density reflects mechanical support related to plant size in herbs and trees, in epiphytes it mostly reflects water storage and scales with leaf water content.
    • Synthesis. Our findings advance our understanding of epiphyte ecology, but we note that currently mainly leaf traits are available. Important gaps are root, shoot and whole plant, demographic and gas exchange traits. We suggest how future research might use available data and fill data gaps.
  • Isotopically characterised N2O reference materials for use as community standards

    Mohn J, Biasi C, Bodé S, Boeckx P, Brewer PJ, Eggleston S, Geilmann H, Guillevic M, Kaiser J, Kantnerová K, Moossen H, Müller J, Nakagawa M, Pearce R, von Rein I, Steger D, Toyoda S, Wanek W, Wexler SK, Yoshida N, Yu L
    2022 - Rapid Communications in Mass Spectrometry, 36: Article e9296



    Information on the isotopic composition of nitrous oxide (N2O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2O isotope Reference Materials (RMs).


    Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2O isotope RMs have been developed and their 15N/14N, 18O/16O, 17O/16O ratios and 15N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales.


    The established N2O isotope RMs offer a wide spread in delta (δ) values: δ15N: 0 to +104‰, δ18O: +39 to +155‰, and δ15NSP: −4 to +20‰. Conversion and uncertainty propagation of δ15N and δ18O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15N(N2O) and δ18O(N2O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15NSP, an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future.


    A set of seven N2O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17O data for N2O RMs is expected to improve data quality/correction algorithms with respect to δ15NSP and δ15N analysis by mass spectrometry. We anticipate that the N2O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.

  • Development of micro-zymography: Visualization of enzymatic activity at the microscopic scale for aggregates collected from the rhizosphere

    Ghaderi N, Schmidt H, Schlüter S, Banfield C, Blagodatskaya E
    2022 - Plant and soil, 478: 253-271



    Visualization of enzymatic activity links microbial functioning to localization in heterogeneous soil habitats. To assess enzymatic reactions in soil thin layer at the microscopic level, we developed a micro-zymography approach and tested it by visualization of the potential activity of phosphomonoesterase for aggregates collected from the rhizosphere of Zea mays L.


    We evaluated micro-zymography by applying fluorogenically-labeled substrate i) on individual soil aggregates freshly sampled from the rhizosphere, ii) on thin layers of aggregates (≈ 500 µm) saturated with substrate to assess the dynamics of phosphomonoesterase activity, and iii) on maize roots under laser scanning microscope upon the identified hotspots by membrane-based zymography.


    We found super transparent silicon as the most appropriate fixative to prevent sample drying. We optimized microscope settings to eliminate the soil auto-fluorescence. The fluorescent signal shifted from the free liquid phase towards the aggregate boundaries within 30 min after substrate addition and was finally detectable at the surface of a few aggregates. This was probably due to higher microbial abundance and enzymatic activity on the soil aggregates compared to the liquid phase. The enzymatic activity appeared patchy at the aggregate and root surfaces indicating heterogeneous distribution of hotspots.


    The methodology including calibration, sample preparation, fixation, and monitoring was developed. The novel membrane-free micro-zymography approach is a promising tool to identify functional specificity and niche differentiation on roots and soil aggregates. This approach revealed unexplained complexity of competing processes (biochemical, hydrolytic, and physical) due to differently charged reaction products and enzyme-clay complexes.

  • Heavy Metals in Sediments and Greater Flamingo Tissues from a Protected Saline Wetland in Central Spain

    Valiente N, Pangerl A, Gómez-Alday JJ, Jirsa F
    2022 - Appl. Sci., 12: Article 5769


    Aquatic ecosystems often act as sinks for agricultural, industrial, and urban wastes. Among potential pollutants, heavy metals can modify major biogeochemical cycles by affecting microorganisms and other biota. This study assessed the distribution and concentration of heavy metals (Cd, Hg, Cu, Pb, and Zn) in Pétrola Lake, a heavily impacted area in central Spain where the greater flamingo Phoenicopterus roseus breeds. This study was designed to determine the concentration and identify the potential sources of heavy metals in Pétrola Lake protected area, including sediments, agricultural soils, and tissues of the greater flamingo. A six-step sequential extraction was performed to fractionate Cu, Pb, and Zn from lake sediments and agricultural soil samples to gain insight into different levels of their bioavailability. Our results showed that Pb and Cd accumulated in lake sediments and agricultural soils, respectively, most likely derived from anthropogenic sources. Multivariate analysis revealed differences between these (Pb and Cd) and the remaining studied elements (Cu, Hg, and Zn), whose concentrations were all below the pollution threshold. Lead pollution in sediments was apparently dominated by organic matter binding, with fractions up to 34.6% in lake sediments. Cadmium slightly accumulated in agricultural soils, possibly associated with the use of fertilizers, but still below the pollution thresholds. In the flamingo samples, low bioaccumulation was observed for all the studied elements. Our study suggests that human activities have an impact on heavy metal accumulation in sediments and soils, despite being below the pollution levels.

  • Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment

    Verryckt LT, Vicca S, Van Langenhove L, Stahl C, Asensio D, Urbina I, Ogaya R, Llusià J, Grau O, Peguero G, Gargallo-Garriga A, Courtois EA, Margalef O, Portillo-Estrada M, Ciais P, Obersteiner M, Fuchslueger L, Lugli LF, Fernandez-Garberi PR, Vallicrosa H, Verlinden M, Ranits C, Vermeir P, Coste S, Verbruggen E, Bréchet L, Sardans J, Chave J, Peñuelas J, Janssens IA
    2022 - Earth Syst. Sci. Data, 14: 5-8


    Terrestrial biosphere models typically use the biochemical model of Farquhar, von Caemmerer, and Berry (1980) to simulate photosynthesis, which requires accurate values of photosynthetic capacity of different biomes. However, data on tropical forests are sparse and highly variable due to the high species diversity, and it is still highly uncertain how these tropical forests respond to nutrient limitation in terms of C uptake. Tropical forests often grow on soils low in phosphorus (P) and are, in general, assumed to be P rather than nitrogen (N) limited. However, the relevance of P as a control of photosynthetic capacity is still debated. Here, we provide a comprehensive dataset of vertical profiles of photosynthetic capacity and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of NP, and other leaf nutrients in photosynthesis in tropical forests. To further facilitate the use of our data in syntheses and model studies, we provide an elaborate list of ancillary data, including important soil properties and nutrients, along with the leaf data. As environmental drivers are key to improve our understanding of carbon (C) and nutrient cycle interactions, this comprehensive dataset will aid to further enhance our understanding of how nutrient availability interacts with C uptake in tropical forests. The data are available at (Verryckt, 2021).

  • Nitrogen fixation by diverse diazotrophic communities can support population growth of arboreal ants

    Nepel M, Pfeifer J, Oberhauser FB, Richter A, Woebken D, Mayer VE
    2022 - BMC Biology, 20: Article 135



    Symbiotic ant-plant associations, in which ants live on plants, feed on plant-provided food, and protect host trees against threats, are ubiquitous across the tropics, with the Azteca-Cecropia associations being amongst the most widespread interactions in the Neotropics. Upon colonization of Cecropia’s hollow internodes, Azteca queens form small patches with plant parenchyma, which are then used as waste piles when the colony grows. Patches—found in many ant-plant mutualisms—are present throughout the colony life cycle and may supplement larval food. Despite their initial nitrogen (N)-poor substrate, patches in Cecropia accommodate fungi, nematodes, and bacteria. In this study, we investigated the atmospheric N2 fixation as an N source in patches of early and established ant colonies.


    Via 15N2 tracer assays, N2 fixation was frequently detected in all investigated patch types formed by three Azteca ant species. Quantified fixation rates were similar in early and established ant colonies and higher than in various tropical habitats. Based on amplicon sequencing, the identified microbial functional guild—the diazotrophs—harboring and transcribing the dinitrogenase reductase (nifH) gene was highly diverse and heterogeneous across Azteca colonies. The community composition differed between early and established ant colonies and partly between the ant species.


    Our data show that N2 fixation can result in reasonable amounts of N in ant colonies, which might not only enable bacterial, fungal, and nematode growth in the patch ecosystems but according to our calculations can even support the growth of ant populations. The diverse and heterogeneous diazotrophic community implies a functional redundancy, which could provide the ant-plant-patch system with a higher resilience towards changing environmental conditions. Hence, we propose that N2 fixation represents a previously unknown potential to overcome N limitations in arboreal ant colonies.

  • A high-spatial resolution soil carbon and nitrogen dataset for the northern permafrost region, based on circumpolar land cover upscaling

    Palmtag J, Obu J, Kuhry P, Richter A, Siewert MB, Weiss N, Westermann S, Hugelius G
    2022 - Earth Systems Science Data, 14: 4095–4110


    Soils in the northern high latitudes are a key component in the global carbon cycle; the northern permafrost region covers 22 % of the Northern Hemisphere land surface area and holds almost twice as much carbon as the atmosphere. Permafrost soil organic matter stocks represent an enormous long-term carbon sink which is in risk of switching to a net source in the future. Detailed knowledge about the quantity and the mechanisms controlling organic carbon storage is of utmost importance for our understanding of potential impacts of and feedbacks on climate change. Here we present a geospatial dataset of physical and chemical soil properties calculated from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. The aim of our dataset is to provide a basis to describe spatial patterns in soil properties, including quantifying carbon and nitrogen stocks. There is a particular need for spatially distributed datasets of soil properties, including vertical and horizontal distribution patterns, for modeling at local, regional, or global scales. This paper presents this dataset, describes in detail soil sampling; laboratory analysis, and derived soil geochemical parameters; calculations; and data clustering. Moreover, we use this dataset to estimate soil organic carbon and total nitrogen storage estimates in soils in the northern circumpolar permafrost region (17.9×106 km2) using the European Space Agency's (ESA's) Climate Change Initiative (CCI) global land cover dataset at 300 m pixel resolution. We estimate organic carbon and total nitrogen stocks on a circumpolar scale (excluding Tibet) for the 0–100 and 0–300 cm soil depth to be 380 and 813 Pg for carbon, and 21 and 55 Pg for nitrogen, respectively. Our organic carbon estimates agree with previous studies, with most recent estimates of 1000 Pg (−170 to +186 Pg) to 300 cm depth. Two separate datasets are freely available on the Bolin Centre Database repository (, Palmtag et al., 2022a; and, Palmtag et al., 2002b).

  • Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

    Noll L, zhang S, Zheng Q, Hu Y, Hofhansl F, Wanek W
    2022 - Biogeosciences, 19: 5419-5433


    Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils, and the cleavage of proteins into small peptides and amino acids has been shown to be the rate-limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000 km long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability, e.g., by soil protein content. Soil geochemistry was a secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.

  • Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies

    Zhu Z, Fang Y, Liang Y, Li Y, Liu S, Li B, Gao W, Yuan H, Kuzyakov Y, Wu J, Richter A, Ge T
    2022 - Soil Biology and Biochemistry, 169: Article 108669


    Carbon and nutrient inputs are required to stimulate the formation and mineralization of soil organic carbon (SOC) through processes related to microbial growth and priming effects (PEs). PEs are thought to affect microbial life strategies, however, the mechanisms underlying their role in SOC formation and microbial dynamics remain largely unknown, particularly in paddy soils. Here, we examined the underlying strategies and response mechanisms of microorganisms in regulating PEs and C accumulation in flooded paddy soil. Levels and stoichiometric ratios of resources were evaluated over a 60-day incubation period. Low (equivalent to 50% soil microbial biomass C [MBC]) and high (500% MBC) doses of 13C-labeled glucose were added to the soil, along with mineral N, P, and S (NPS) fertilizers at five concentrations. Glucose mineralization increased linearly with NPS concentration under both low and high glucose inputs. However, glucose addition without nutrients induced the preferential microbial utilization of the readily available C, leading to negative PEs. Under high-glucose input, the intensity of negative PEs increased with increasing NPS addition (PE: from −460 to −710 mg C kg−1 soil). In contrast, under low-glucose inputs, the intensity of positive PEs increased with increasing NPS addition (PE: 60–100 mg C kg−1 soil). High-glucose input with NPS fertilization favored high-yield microbial strategists (Y-strategists), increasing glucose-derived SOC accumulation. This phenomenon was evidenced by the large quantities of 13C detected in microbial biomass and phospholipid fatty acids (PLFAs), increasing the soil net C balance (from 0.76 to 1.2 g C kg−1). In contrast, low levels of glucose and NPS fertilization shifted the microbial community composition toward dominance of resource-acquisition strategists (A-strategists), increasing SOC mineralization. This was evidenced by 13C incorporation into the PLFAs of gram-positive bacteria, increased activity of N- and P-hydrolases, and positive PEs for acquiring C and nutrients from soil organic matter. Consequently, the soil net C balance decreased from 0.31 to 0.01 g C kg−1 soil. In conclusion, high C input (i.e., 500% MBC), particularly alongside hig NPS addition, increases SOC content via negative priming and microbial-derived C accumulation due to the shift toward Y-strategist communities which efficiently utilize resources. This study highlights the importance of mineral fertilization management when incorporating organic supplements in paddy soils to stimulate microbial turnover and C sequestration.

  • Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days

    Liu X, Chen S, Li X, Yang Z, Xiong D, Xu C, Wanek W, Yang Y
    2022 - Geoderma, 427: Article 116139


    Litter decomposition is a fundamental ecosystem process, influencing soil carbon storage, nutrient availability, and forest productivity. Climate change may affect litter decomposition and thus nutrient dynamics via altering plant phenology, litter quality, and the composition of soil microbial communities. However, the effects of climate change on litter decomposition are not well understood, especially in tropical and subtropical forest ecosystems, which are less temperature limited. We conducted a manipulative study to assess how soil warming affects litter decomposition rates and its relation to litter chemistry, extracellular enzyme activities, and microbial biomass in an evergreen broad-leaved forest in subtropical China. The temperature at 0–10 cm soil depth was experimentally increased by 4 °C, starting from June 2016 to October 2017. Soil warming did not affect litter mass loss during the initial stage (0–270 day), but reduced litter mass loss by 12.9 % at the later stages (days 350 to 450). Structural equation modeling showed that litter moisture content was reduced by warming, but this was not the main effector leading to the reduction in late-stage litter decomposition in the warming treatment. The model suggested that warming reduced litter decomposition rates likely indirectly, through its negative effects on extractable organic carbon and microbial biomass (e.g., microbial carbon and nitrogen), and on litter enzyme activities (a composite variable of β-glucosidase, cellobiohydrolase, acid phosphatase, and phenoloxidase). These results show that warming may slow down litter carbon cycling, but this subtropical forest ecosystem did not affect litter N and P cycling and soil nutrient availability.

  • Catchment properties as predictors of greenhouse gas concentrations across a gradient of boreal lakes

    Valiente N, Eiler A, Allesson L, Andersen T, Clayer F, Crapart C, Dörsch P, Fontaine L, Heuschele J, Vogt RD, Wei J, de Wit HA, Hessen DO
    2022 - Front. Environ. Sci., 10: Article 880619


    Boreal lakes are the most abundant lakes on Earth. Changes in acid rain deposition, climate, and catchment land use have increased lateral fluxes of terrestrial dissolved organic matter (DOM), resulting in a widespread browning of boreal freshwaters. This browning affects the aqueous communities and ecosystem processes, and boost emissions of the greenhouse gases (GHG) CH4, CO2, and N2O. In this study, we predicted biotic saturation of GHGs in boreal lakes by using a set of chemical, hydrological, climate, and land use parameters. For this purpose, concentrations of GHGs and nutrients (organic C, -P, and -N) were determined in surface water samples from 73 lakes in south-eastern Norway covering wide ranges in DOM and nutrient concentrations, as well as catchment properties and land use. The spatial variation in saturation of each GHG is related to explanatory variables. Catchment characteristics (hydrological and climate parameters) such as lake size and summer precipitation, as well as NDVI, were key determinants when fitting GAM models for CH4 and CO2 saturation (explaining 71 and 54%, respectively), while summer precipitation and land use data were the best predictors for the N2O saturation, explaining almost 50% of deviance. Our results suggest that lake size, precipitation, and terrestrial primary production in the watershed control the saturation of GHG in boreal lakes. These predictions based on the 73-lake dataset was validated against an independent dataset from 46 lakes in the same region. Together, this provides an improved understanding of drivers and spatial variation in GHG saturation in boreal lakes across wide gradients of lake and catchment properties. The assessment highlights the need to incorporate multiple explanatory parameters in prediction models of GHGs for extrapolation across the boreal biome.

  • Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition

    Wang L, Zhou Y, Chen Y, Xu Z, Zhang J, Liu Y, Joly FX
    2022 - Soil Biology and Biochemistry, 168: Article 108632


    In biodiverse ecosystems, leaf litter of different plant species decomposes in mixtures, for which decomposition rates notoriously deviate from that expected from monospecific treatments. Despite important research efforts in past decades, these litter diversity effects remain difficult to predict. We hypothesized that this is due to a focus on bulk litter decomposition, while different carbon fractions constituting the litter may respond differently to litter diversity, thereby blurring the overall response. To test this hypothesis, we determined how the decomposition of (i) soluble compounds, (ii) cellulose, and (iii) lignin responded to litter mixing in a 3.5-year field experiment in an alpine forest. We found that the decomposition of soluble compounds and cellulose in mixtures was faster than expected from monospecific treatments, while that of lignin was slower. These deviations from expected decomposition rates of each litter carbon fraction were driven by different aspects of the litter functional diversity. This suggests that different mechanisms operating on distinct litter fractions lead to synergistic and antagonistic interactions that simultaneously affect bulk litter decomposition. Furthermore, the magnitude of these fraction-specific deviations from expected decomposition rates consistently decreased throughout decomposition. Considering the response of litter fractions and their temporality, rather than focusing on bulk litter thus seems critical to evaluate the response of decomposition to plant diversity and identify underlying mechanisms.

  • Broad- and small-scale environmental gradients drive variation in chemical, but not morphological, leaf traits of vascular epiphytes

    Guzmán-Jacob V, Guerrero-Ramírez NR, Craven D, Paterno GB, Taylor A, Kromer T, Wanek W, Zotz G, Kreft H
    2022 - Functional Ecology, 36: 1858-1872


    1. Variation in leaf functional traits along environmental gradients can reveal how vascular epiphytes respond to broad- and small-scale environmental gradients. Along elevational gradients, both temperature and precipitation likely play an important role as drivers of leaf trait variation, but these traits may also respond to small-scale changes in light, temperature and humidity along the vertical environmental gradient within forest canopies. However, the relative importance of broad- and small-scale environmental gradients as drivers of variation in leaf functional traits of vascular epiphytes is poorly understood.
    2. Here, we examined variation in morphological and chemical leaf traits of 102 vascular epiphyte species spanning two environmental gradients along Cofre de Perote mountain in Mexico: (i) a broad-scale environmental gradient approximated by elevation as well as by species' lower and upper elevational limits, and (ii) small-scale environmental gradients using the relative height of attachment of an epiphyte on a host tree as a proxy for variation in environmental conditions within the forest canopy. We also assessed whether variation in morphological and chemical leaf traits along these gradients was consistent across photosynthetic pathways (CAM and C3).
    3. Broad- and small-scale environmental gradients explained more variation in chemical traits (marginal R2: 11%–89%) than in morphological traits (marginal R2: 2%–31%). For example, leaf carbon isotope signatures (δ13C), which reflects water-use efficiency, varied systematically across both environmental gradients, suggesting a decrease in water-use efficiency with increasing lower and upper elevational limits and an increase in water-use efficiency with relative height of attachment. The influence of lower and upper elevational limits on trait variation differed between photosynthetic pathways, except for leaf dry matter content and leaf nitrogen-to-phosphorus ratio. Contrary to our expectations, broad- and small-scale environmental gradients explained minimal variation in morphological leaf traits, suggesting that environmental conditions do not constrain morphological leaf trait values of vascular epiphytes.
    4. Our findings suggest that assessing multiple drivers of leaf trait variation among photosynthetic pathways is key for disentangling the mechanisms underlying responses of vascular epiphytes to environmental conditions.
  • Fatty acid 16:1ω5 as a proxy for arbuscular mycorrhizal fungal biomass: current challenges and ways forward

    Lekberg Y, Bååth E, Frostegård Å, Hammer E, Hedlund K, Jansa J, Kaiser C, Ramsey PW, Řezanka T, Rousk J, Wallander H, Welc M, Olsson PA
    2022 - Biology and Fertility of Soils, 58: 835-842


    Fatty acid biomarkers have emerged as a useful tool to quantify biomass of various microbial groups. Here we focus on the frequent use of the fatty acid 16:1ω5 as a biomarker for arbuscular mycorrhizal (AM) fungi in soils. We highlight some issues with current applications of this method and use several examples from the literature to show that the phospholipid fatty acid (PLFA) 16:1ω5 can occur in high concentrations in soils where actively growing AM fungi are absent. Unless the study includes a control where the contribution of other microbes can be estimated, we advocate for the use of the neutral lipid fatty acid (NLFA) 16:1ω5. This biomarker has higher specificity, is more responsive to shifts in AM fungal biomass, and quantification can be conducted along with PLFA analysis without doubling analytical efforts. We conclude by contrasting various methods used to measure AM fungal biomass in soil and highlight future research needs to optimize fatty acid analyses.

  • Crop rotational complexity affects plant-soil nitrogen cycling during water deficit

    Bowles TM, Jilling A, Morán-Rivera K, Schnecker J, Grandy AS
    2022 - Soil Biology and Biochemistry, 166: Article 108552


    One of the biggest environmental challenges facing agriculture is how to both supply and retain nitrogen (N), especially as precipitation becomes more variable with climate change. We used a greenhouse experiment to assess how contrasting histories of crop rotational complexity affect plant-soil-microbe interactions that govern N processes, including during water stress. With higher levels of carbon and N cycling hydrolytic enzymes, higher mineral-associated organic matter N concentrations, and an altered microbial community, soils from the most complex rotation enabled 80% more corn N uptake under two moisture regimes, compared to soil from monoculture corn. Higher levels of plant N likely drove the changes in corn leaf gas exchange, particularly increasing intrinsic water use efficiency by 9% in the most complex rotation. The water deficit increased the standing pool of nitrate 44-fold in soils with a history of complex crop rotations, compared to an 11-fold increase in soils from the corn monoculture. The implications of this difference must be considered in a whole cropping systems and field context. Cycling of 15N-labeled fresh clover residue into soil N pools did not depend on the water regime or rotation history, with 2-fold higher recovery in the mineral vs. particulate organic N pool. In contrast, the water deficit reduced recovery of clover 15N in corn shoots by 37%, showing greater impacts of water deficit on plant N uptake compared to organic N cycling in soil. This study provides direct experimental evidence that long-term crop rotational complexity influences microbial N cycling and availability with feedbacks to plant physiology. Collectively, these results could help explain general observations of higher yields in more complex crop rotations, including specifically during dry conditions.

  • Trichoderma reesei

    2022 - Trends in Microbiology, 30: 403-404


    The filamentous fungus Trichoderma reesei (teleomorph: Hypocrea jecorina) grows on rotting plant material in its natural habitat. It is among the most prolific producers of plant cell-wall-degrading enzymes and is frequently used in industry for production of those and other performance proteins. A complete telomere-to-telomere genome sequence is now available (34 Mb, 10 877 genes, 7 chromosomes). Sexual reproduction of the haploid T. reesei in the laboratory was achieved only about a decade ago and requires pheromones, but also other chemical signals. T. reesei is readily transformable, and a plethora of tools, including CRISPR/Cas, have been developed which facilitate functional genomics, genome-wide investigations, and live-cell imaging, and tools to investigate chemical communication. Studies focused on a detailed understanding of enzyme expression and its improvement revealed the interplay of numerous transcription factors, connections to signaling pathways, and a significant impact of light. Detailed understanding of the physiology of T. reesei will enable optimized enzyme expression and thereby support development of more sustainable, yet commercially viable, solutions for biofuel production, textile production and recycling, chemical conversions using enzymes, food processing, production of pharmaceuticals including antibodies, bioremediation, and agriculture.

  • Applying the 15N labelling technique to material derived from a landfill simulation experiment to understand nitrogen cycle processes under aerobic and anaerobic conditions

    Fricko N, Wanek W, Fellner J
    2022 - Biodegradation, 33: 557-573


    Reactive nitrogen (N) species, such as ammonium (NH4+), nitrate (NO3) and gaseous nitrous oxide (N2O), are released into the environment during the degradation of municipal solid waste (MSW), causing persistent environmental problems. Landfill remediation measures, such as in-situ aeration, may accelerate the degradation of organic compounds and reduce the discharge of ammonium via leachate. Nonetheless, the actual amount of N in the waste material remains relatively constant and a coherent explanation for the decline in leachate ammonium concentrations is still lacking. Hence, the present study aimed to elucidate the dynamics of N and its transformation processes during waste degradation. To this end, the gross rates of organic N mineralization and nitrification were measured using 15N pool dilution in waste material derived from a landfill simulation reactor (LSR) experiment. The results revealed a high potential for N mineralization and nitrification, the latter of which declined with the diminishing amount of extractable ammonium (after aeration). The analysis of the concentration and isotopic composition of N2O formed confirmed incomplete denitrification as the main source for N2O. Moreover, the natural abundance of 15N was investigated in various waste N pools to verify the conclusions drawn from the 15N tracing experiment. δ15N values of total waste N increased during aeration, indicating that nitrification is the major driver for N losses from aerated waste. The application of stable isotopes thereby allowed unprecedented insights into the complex N dynamics in decomposing landfill waste, of their response to aeration and their effect on hydrological versus gaseous loss pathways.

  • Microbiome assembly in thawing permafrost and its feedbacks to climate

    Ernakovich JG, Barbato RA, Rich VI, Schädel C, Hewitt RE, Doherty SJ, Whalen ED, Abbott BW, Barta J, Biasi C, Chabot CL, Hultman J, Knoblauch C, Lau Vetter MCY, Leewis M-C, Liebner S, Mackelprang R, Onstott TC, Richter A, Schütte UME, Siljanen HMP, Taş N, Timling I, Vishnivetskaya TA, Waldrop MP, Winkel M
    2022 - Global Change Biology, 28: 5007-5026


    The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost–climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.

  • Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System

    Valiente N, Dountcheva I, Sanz D, Gómez-Alday JJ
    2022 - Water, 14: Article 1628


    Saline lakes are mostly located in endorheic basins in arid and semi-arid regions, where the excess of evaporation over precipitation promotes the accumulation of salts on the surface. As the salinity of these lakes increases, their mass balance changes, and biogeochemical processes may be intensified. In that sense, Pétrola Lake (SE Spain) is a terminal lake located in an endorheic basin with elevated anthropic pressure, mainly derived from agricultural inputs and wastewater discharge. The goal of this study was to evaluate the interaction between groundwater and saline water from Pétrola Lake to improve our knowledge of groundwater recharge processes by density-driven flow (DDF) in terminal lakes. A combination of hydrochemical (chloride concentration) and stable isotope (δ18OH2O and δ2HH2O) data were used. In order to test the conceptual model, a simple numerical experiment was performed using a one-dimensional column that represents the relationship between the lake and the aquifer incorporating the variable density coupling control in solute migration. The isotopic composition of 190 groundwater and surface water samples collected between September 2008 and July 2015 provides a regression line (δ2HH2O = 5.0·δ18OH2O − 14.3‰, R2 = 0.95) consistent with dominant evaporation processes in the lake. The DDF towards the underlying aquifer showed a strong influence on the mixing processes between the groundwater and surface water. Nevertheless, groundwater chemistry at different depths beneath the lake remains almost constant over time, suggesting an equilibrium between DDF and regional groundwater flow (RGF). Modelling isotope changes allowed inferring the temporal pattern of saline water recharge, coinciding with the summer season when water loss through evaporation is most significant. Consequently, the transport of solutes suitable for chemical reactions is then feasible to deeper zones of the aquifer.

  • Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types

    Gavazov K, Canarini A, Jassey VEJ, Mills R, Richter A, Sundqvist MK, Väisänen M, Walker TWN, Wardle DA, Dorrepaal E
    2022 - Soil Biology and Biochemistry, 165: Article 108530


    Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes.

  • Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil

    Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W
    2022 - Global Change Biology, 28: 3441-3458


    Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0–10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10–20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.

  • Impaired mucosal homeostasis in short-term fiber deprivation is due to reduced mucus production rather than overgrowth of mucus-degrading bacteria

    Overbeeke A, Lang M, Hausmann B, Watzka M, Nikolov G, Schwarz J, Kohl G, De Paepe K, Eislmayr K, Decker T, Richter A, Berry D
    2022 - Nutrients, 14: Article 3802


    The gut mucosal environment is key in host health; protecting against pathogens and providing a niche for beneficial bacteria, thereby facilitating a mutualistic balance between host and microbiome. Lack of dietary fiber results in erosion of the mucosal layer, suggested to be a result of increased mucus-degrading gut bacteria. This study aimed to use quantitative analyses to investigate the diet-induced imbalance of mucosal homeostasis. Seven days of fiber-deficiency affected intestinal anatomy and physiology, seen by reduced intestinal length and loss of the colonic crypt-structure. Moreover, the mucus layer was diminished, muc2 expression decreased, and impaired mucus secretion was detected by stable isotope probing. Quantitative microbiome profiling of the gut microbiota showed a diet-induced reduction in bacterial load and decreased diversity across the intestinal tract, including taxa with fiber-degrading and butyrate-producing capabilities. Most importantly, there was little change in the absolute abundance of known mucus-degrading bacteria, although, due to the general loss of taxa, relative abundance would erroneously indicate an increase in mucus degraders. These findings underscore the importance of using quantitative methods in microbiome research, suggesting erosion of the mucus layer during fiber deprivation is due to diminished mucus production rather than overgrowth of mucus degraders. View Full-Text

  • Drivers and variability of CO2:O2 saturation along a gradient from boreal to Arctic lakes

    Allesson L, Valiente N, Dörsch P, Andersen T, Eiler A, O Hessen D
    2022 - Scientific Reports, 12: Article 18989


    Lakes are significant players for the global climate since they sequester terrestrially derived dissolved organic carbon (DOC), and emit greenhouse gases like CO2 to the atmosphere. However, the differences in environmental drivers of CO2 concentrations are not well constrained along latitudinal and thus climate gradients. Our aim here is to provide a better understanding of net heterotrophy and gas balance at the catchment scale in a set of boreal, sub-Arctic and high-Arctic lakes. We assessed water chemistry and concentrations of dissolved O2 and CO2, as well as the CO2:O2 ratio in three groups of lakes separated by steps of approximately 10 degrees latitude in South-Eastern Norway (near 60° N), sub-Arctic lakes in the northernmost part of the Norwegian mainland (near 70° N) and high-Arctic lakes on Svalbard (near 80° N). Across all regions, CO2 saturation levels varied more (6–1374%) than O2 saturation levels (85–148%) and hence CO2 saturation governed the CO2:O2 ratio. The boreal lakes were generally undersaturated with O2, while the sub-Arctic and high-Arctic lakes ranged from O2 saturated to oversaturated. Regardless of location, the majority of the lakes were CO2 supersaturated. In the boreal lakes the CO2:O2 ratio was mainly related to DOC concentration, in contrast to the sub-Arctic and high-Arctic localities, where conductivity was the major statistical determinant. While the southern part is dominated by granitic and metamorphic bedrock, the sub-Arctic sites are scattered across a range of granitic to sedimentary bed rocks, and the majority of the high-Arctic lakes are situated on limestone, resulting in contrasting lake alkalinities between the regions. DOC dependency of the CO2:O2 ratio in the boreal region together with low alkalinity suggests that in-lake heterotrophic respiration was a major source of lake CO2. Contrastingly, the conductivity dependency indicates that CO2 saturation in the sub-Arctic and high-Arctic lakes was to a large part explained by DIC input from catchment respiration and carbonate weathering.

  • New Proposal of Epiphytic Bromeliaceae Functional Groups to Include Nebulophytes and Shallow Tanks

    Reyes-Garcia C, Pereira-Zaldívar NA, Espadas-Manrique C, Tamayo-Chim M, Chilpa-Galván N, Cach-Pérez MJ, Ramírez-Medina M, Benavides AM, Hietz P, Zotz G, Andrade JL, Cardelús C, de Paula Oliveira R, Einzmann HJR, Guzmán Jacob V, Kromer T, Pinzón JP, Sarmento Cabral J, Wanek W, Woods C
    2022 - Plants, 11: Article 3151


    The Bromeliaceae family has been used as a model to study adaptive radiation due to its terrestrial, epilithic, and epiphytic habits with wide morpho-physiological variation. Functional groups described by Pittendrigh in 1948 have been an integral part of ecophysiological studies. In the current study, we revisited the functional groups of epiphytic bromeliads using a 204 species trait database sampled throughout the Americas. Our objective was to define epiphytic functional groups within bromeliads based on unsupervised classification, including species from the dry to the wet end of the Neotropics. We performed a hierarchical cluster analysis with 16 functional traits and a discriminant analysis, to test for the separation between these groups. Herbarium records were used to map species distributions and to analyze the climate and ecosystems inhabited. The clustering supported five groups, C3 tank and CAM tank bromeliads with deep tanks, while the atmospheric group (according to Pittendrigh) was divided into nebulophytes, bromeliads with shallow tanks, and bromeliads with pseudobulbs. The two former groups showed distinct traits related to resource (water) acquisition, such as fog (nebulophytes) and dew (shallow tanks). We discuss how the functional traits relate to the ecosystems inhabited and the relevance of acknowledging the new functional groups.

  • Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil

    Kwatcho Kengdo S, Ahrens B, Tian Y, Heinzle J, Wanek W, Schindlbacher A, Borken W
    2022 - Sci Total Environ, 855: Article 158800


    Fine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO2). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest. Fine root turnover times of the individual root fractions were estimated with a one-pool model. Soil warming strongly increased fine root production by up to 128 % within one year, but after two years, the production was less pronounced (+35 %). The first-year production was likely very high due to the rapid exploitation of the root-free ingrowth cores. The radiocarbon signatures of fine roots were overall variable among treatments and plots. Soil warming tended to decrease fine root turnover times of all the measured root fractions after 8 and 14 years of warming, and there was a tendency for trees to use older carbon reserves for fine root production in warmed plots. Furthermore, soil warming increased fine root turnover from 50 to 106 g C m-2 yr-1 (based on two different approaches). Our findings suggest that future climate warming may increase carbon input into soils by enhancing fine root turnover. If this increase may partly offset carbon losses by increased mineralization of soil organic matter in temperate forest soils is still unclear and should guide future research.

  • Down-regulation of the bacterial protein biosynthesis machinery in response to weeks, years, and decades of soil warming

    Söllinger A, Séneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, Sigurdsson BD, Janssens I, Peñuelas J, Urich T, Richter A, Tveit AT
    2022 - Science Advances, 8: eabm3230


    How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here, we applied metatranscriptomics to investigate microbial physiological responses to medium-term (8 years) and long-term (>50 years) subarctic grassland soil warming of +6°C. Besides indications for a community-wide up-regulation of centralmetabolic pathways and cell replication, we observed a down-regulation of the bacterial protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations result in cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6°C), further supported our conclusion. Down-regulating the protein biosynthesis machinery liberates energy and matter, allowing soil bacteria to maintain high metabolic activities and cell division rates even after decades of warming.

  • Plant phosphorus-use and -acquisition strategies in Amazonia

    Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K
    2022 - New Phytologist, 234: 1126-1143


    In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2. We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.

  • The role of coupled DNRA-Anammox during nitrate removal in a highly saline lake

    Valiente N, Jirsa F, Hein T, Wanek W, Prommer J, Bonin P, Gómez-Alday JJ
    2022 - Science of The Total Environment, 806: Article 150726


    Nitrate (NO3) removal from aquatic ecosystems involves several microbially mediated processes, including denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonium oxidation (anammox), controlled by slight changes in environmental gradients. In addition, some of these processes (i.e. denitrification) may involve the production of undesirable compounds such as nitrous oxide (N2O), an important greenhouse gas. Saline lakes are prone to the accumulation of anthropogenic contaminants, making them highly vulnerable environments to NO3 pollution. The aim of this paper was to investigate the effect of light and oxygen on the different NO3 removal pathways under highly saline conditions. For this purpose, mesocosm experiments were performed using lacustrine, undisturbed, organic-rich sediments from the Pétrola Lake (Spain), a highly saline waterbody subject to anthropogenic NO3 pollution. The revised 15N-isotope pairing technique (15N-IPT) was used to determine NO3 sink processes. Our results demonstrate for the first time the coexistence of denitrification, DNRA, and anammox processes in a highly saline lake, and how their contribution was determined by environmental conditions (oxygen and light). DNRA, and especially denitrification to N2O, were the dominant nitrogen (N) removal pathways when oxygen and/or light were present (up to 82%). In contrast, anoxia and darkness promoted NO3 reduction by DNRA (52%), combined with N loss by anammox (28%). Our results highlight the role of coupled DNRA-anammox, which has not yet been investigated in lacustrine sediments. We conclude that anoxia and darkness favored DNRA and anammox processes over denitrification and therefore to restrict N2O emissions to the atmosphere.

Book chapters and other publications

No matching database entries were found.