Publications

Publications in peer reviewed journals

116 Publications found
  • Beyond PLFA: Concurrent extraction of neutral and glycolipid fatty acids provides new insights into soil microbial communities

    Gorka S, Darcy S, Horak J, Imai B, Mohrlok M, Salas E, Richter A, Schmidt H, Wanek W, Kaiser C, Canarini A
    2023 - Soil Biology and Biochemistry, 187: Article 109205

    Abstract: 

    The analysis of phospholipid fatty acids (PLFAs) is one of the most common methods used to quantify the abundance, and analyse the community structure, of soil microbes. The PLFA extraction method can yield two additional lipid fractions—neutral lipids and glycolipids—which potentially hold additional, valuable information on soil microbial communities. Yet its quantitative sensitivity on complete neutral lipid (NLFA) and glycolipid fatty acid (GLFA) profiles has never been validated. In this study we tested (i) if the high-throughput PLFA method can be expanded to concurrently extract complete NLFA and GLFA profiles, as well as sterols, (ii) whether taxonomic specificities of signature fatty acids are retained across the three lipid fractions in pure culture strains, and (iii) whether NLFAs and GLFAs allow soil-specific fingerprinting to the same extent as PLFA analysis. By adjusting the polarity of chloroform with 2% ethanol for solid phase extraction, pure lipid standards were fully fractionated into neutral lipidsglycolipids, and phospholipids. Sterols eluted in the neutral lipid fraction, and a betaine lipid co-eluted with phospholipids. We found consistent taxonomic specificities of fatty acid markers across the three lipid fractions by analysing pure culture extracts representative of soil microbes. Fatty acid profiles from soil extracts, however, showed stronger differences between PLFAs, NLFAs, and GLFAs than between soil types. This indicates that PLFAs and NLFAs signify different community properties (biomass vs. carbon storage, putatively), and that GLFAs are sensitive markers for community traits which behave differently than PLFAs. Although we consistently found high abundances of characteristic sterols in fungal extracts, the PLFA extraction method only yielded miniscule amounts of ergosterol from soil extracts. We argue that concomitant measurement of fatty acid profiles from all three lipid fractions is a low-effort and potentially information-rich addition to the PLFA method, and discuss its applicability for soil microbial community analyses.

  • Revisiting process-based simulations of soil nitrite dynamics: Tighter cycling between nitrite and nitrate than considered previously

    Zheng J, Fujii K, Koba K, Wanek W, Müller C, Jansen-Willems AB, Nakajima Y, Wagai R, Canarini A
    2023 - Soil Biology and Biochemistry, 178: Article 108958

    Abstract: 

    Nitrite is an important precursor of many environmentally hazardous compounds (e.g., nitrate, nitrous oxide, and nitrous acid). However, its dynamics in the soil environment are not yet fully understood. The NtraceNitrite tool has been successful in analyzing 15N tracing data. Here, based on a 15N tracing experiment (under aerobic condition) where either the nitrite, the nitrate, or the ammonium pool was labelled, we developed an extended model (NO2Trace), which was featured by the addition of coupled nitrate reduction and nitrite re-oxidation and the separation of the nitrate pool in two sub-pools. With 5 additional parameters optimized, NO2Trace was able to achieve a superior fit to the data, as compared to the NtraceNitrite tool. The additional features might offer a suitable explanation for the isotopic composition of nitrate produced via nitrification in terrestrial ecosystems. Our results carry two important implications: (i) a key assumption of the classical isotope pool dilution technique (i.e., no reflux of tracer) for estimating gross nitrate fluxes is violated, leading to considerable underestimations (22–99% in the datasets tested); (ii) re-oxidation can dominate the consumption (∼75%) of nitrite derived from nitrate reduction, indicating the potential of this process as a target for nitrogen retention mechanism against gaseous nitrogen losses (through nitrite reduction). The additional features of the extended model show a tighter cycle between soil nitrite and nitrate than considered previously and provide a more comprehensive description of soil nitrite transformations. This study also highlights that more work is needed to develop methods capable of separating process- and pathways-specific nitrate and nitrite pools.

  • Seasonal dynamics of soil microbial growth, respiration, biomass, and carbon use efficiency in temperate soils

    Asemoloye MD, Bello TS, Oladoye PO, Gbadamosi MR, Babarinde SO, Adebami GE, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA
    2023 - Geoderma, 440: Article 116693

    Abstract: 

    The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.

  • A rapid and sensitive assay to quantify amino sugars, neutral sugars and uronic acid necromass biomarkers using pre-column derivatization, ultra-high-performance liquid chromatography and high-resolution mass spectrometry

    Salas E, Gorfer M, Bandian D, Wang B, Kaiser C, Wanek W
    2023 - Soil Biology and Biochemistry, 177: Article 108927

    Abstract: 

    Microbial necromass comprises a large fraction of soil organic matter (SOM) due to the accumulation and stabilization of microbial residues from dead archaea, bacteria and fungi. Amino sugars, neutral sugars and uronic acids have been used as microbial necromass biomarkers to trace the origin and composition of microbial residues in the SOM pool. Due to the structural complexity of sugars, derivatization reactions and high-throughput analytical methods are required to separate and quantify these sugar-related compounds. Our aim was to develop a rapid and sensitive assay to measure amino sugar, neutral sugar and uronic acid compounds using pre-column 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. PMP-derivatives were separated and quantified via reversed phase (RP) ultra-high-performance liquid chromatography (UPLC) coupled to high-resolution Orbitrap mass spectrometry (MS). The method was validated and applied on hydrolyzed peptidoglycans and the biomass of archaeal, bacterial, fungal and plant species, as well as with soils. This developed PMP method allowed the separation and quantification of 18 sugar-related compounds, including four amino sugars, three N-acetyl amino sugars, eight neutral sugars, and three uronic acids within 20 min. This PMP method showed a precision for isotope enrichment detection of 0.03–0.05 atom % 13C for D-glucose and D-glucosamine. This is the first time talosaminuronic acid (deriving from archaeal pseudopeptidoglycan) was identified and quantified using PMP derivatization. The application of this novel PMP method on pure hydrolyzed biomass and soils, showed the successful chromatographic and mass spectrometric separation and quantification of amino sugar, neutral sugar and uronic acid compounds. A multivariate analysis using these sugar-related PMP derivatives showed a clustering of the species according to their respective taxonomic group (archaea, gram-positive bacteria, gram-negative bacteria, fungi and plants). The modified PMP method can be applied to identify and quantify soil microbial necromass biomarkers, as well as their contribution to SOM. The sensitive isotope tracer detection allows tracing isotopically labeled materials into necromass biomarkers in SOM pools.

  • The change in metabolic activity of a large benthic foraminifera as a function of light supply

    Lintner M, Lintner B, Schagerl M, Wanek W, Heinz P
    2023 - Scientific Reports, 13: Article 8240

    Abstract: 

    We studied metabolic activity of the symbiont-bearing large benthic foraminifer Heterostegina depressa under different light conditions. Besides the overall photosynthetic performance of the photosymbionts estimated by means of variable fluorescence, the isotope uptake (13C and 15N) of the specimens (= holobionts) was measured. Heterostegina depressa was either incubated in darkness over a period of 15 days or exposed to an 16:8 h light:dark cycle mimicking natural light conditions. We found photosynthetic performance to be highly related to light supply. The photosymbionts, however, survived prolonged darkness and could be reactivated after 15 days of darkness. The same pattern was found in the isotope uptake of the holobionts. Based on these results, we propose that 13C-carbonate and 15N-nitrate assimilation is mainly controlled by the photosymbionts, whereas 15N-ammonium and 13C-glucose utilization is regulated by both, the symbiont and the host cells.

  • Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry

    Sun L, Moorhead DL, Cui Y, Wanek W, Li S, Wang C
    2023 - Ecological Processes, 12: 46

    Abstract: 

    Background

    Ecoenzymatic stoichiometry models (EEST) are often used to evaluate microbial nutrient use efficiency, but the validity of these models under exogenous nitrogen (N) input has never been clarified. Here, we investigated the effects of long-term N addition (as urea) on microbial N use efficiency (NUE), compared EEST and 18O-labeling methods for determining NUE, and evaluated EEST’s theoretical assumption that the ratios of standard ecoenzymatic activities balance resource availability with microbial demand.

    Results

    We found that NUE estimated by EEST ranged from 0.94 to 0.98. In contrast, estimates of NUE by the 18O-labeling method ranged from 0.07 to 0.30. The large differences in NUE values estimated by the two methods may be because the sum of β-N-acetylglucosaminidase and leucine aminopeptidase activities in the EEST model was not limited to microbial N acquisition under exogenous N inputs, resulting in an overestimation of microbial NUE by EEST. In addition, the acquisition of carbon by N-acquiring enzymes also likely interferes with the evaluation of NUE by EEST.

    Conclusions

    Our results demonstrate that caution must be exercised when using EEST to evaluate NUE under exogenous N inputs that may skew standard enzyme assays.

  • Loss of nitrogen fixing capacity in a montane lichen is linked to increased nitrogen deposition

    Crittenden PD, Ellis CJ, Smith RI, Wanek W, Thornton B
    2023 - Journal of Ecology, 111: 288-299

    Abstract: 

    1. The circumboreal/circumpolar N2-fixing lichen Stereocaulon vesuvianum is among the most widespread and abundant fruticose species in montane Britain but has lost the capacity to fix N2 over large areas of the country.
    2. To investigate whether loss of N2-fixation in S. vesuvianum is linked to increased N deposition, we examined thallus morphology, physiology and chemistry at twelve locations representing an N deposition gradient of 3–40 kg ha−1 year−1. Measurements were made in parallel on a non-N2-fixing reference species (Parmelia saxatilis). The presence or absence of cephalodia (N2-fixing nodules containing the cyanobacterium Stigonema sp) was recorded in over 500 herbarium specimens of S. vesuvianum dating back to 1820.
    3. Cephalodium abundance in S. vesuvianum, and 15N concentration in S. vesuvianum and P. saxatilis, were strongly negatively correlated with N deposition and particularly with dry deposited N; cephalodia do not form at total N deposition rates ≥8–9 kg ha−1 year−1. Other morphological oddities in S. vesuvianum at N-polluted sites include increased apothecium (fungal reproductive structure) production and green algal biofilm development. Biofilm covered thalli without cephalodia lacked nitrogenase activity and cephalodia at sites where they rarely develop had nitrogenase activities typical for this species. The presence or absence of cephalodia in herbarium specimens of S. vesuvianum suggest that the present-day N-deposition linked gradient in N2-fixing capacity did not exist in the 19th century and largely developed between 1900–1940.
    4. Synthesis. We provide clear evidence that N2-fixing capacity in S. vesuvianum has been lost in regions subjected to many decades of enhanced atmospheric N deposition. This loss is consistent with established models of diazotrophy, which identify supply of combined N as an inhibitor of N2-fixation. Progressive depletion of thallus 15N with increasing N deposition is in line with available data indicating that much atmospheric N pollution is 15N-depleted. Rates of nitrogenase activity in S. vesuvianum are low compared to other symbiotic systems and perhaps more likely supplanted by elevated N deposition. We suggest that other ecosystem compartments with low rates of fixation (e.g. soils) might also be susceptible to N pollution and merit investigation.
    • The circumboreal/circumpolar N2-fixing lichen Stereocaulon vesuvianum is among the most widespread and abundant fruticose species in montane Britain but has lost the capacity to fix N2 over large areas of the country.
    • To investigate whether loss of N2-fixation in S. vesuvianum is linked to increased N deposition, we examined thallus morphology, physiology and chemistry at twelve locations representing an N deposition gradient of 3–40 kg ha−1 year−1. Measurements were made in parallel on a non-N2-fixing reference species (Parmelia saxatilis). The presence or absence of cephalodia (N2-fixing nodules containing the cyanobacterium Stigonema sp) was recorded in over 500 herbarium specimens of S. vesuvianum dating back to 1820.
    • Cephalodium abundance in S. vesuvianum, and 15N concentration in S. vesuvianum and P. saxatilis, were strongly negatively correlated with N deposition and particularly with dry deposited N; cephalodia do not form at total N deposition rates ≥8–9 kg ha−1 year−1. Other morphological oddities in S. vesuvianum at N-polluted sites include increased apothecium (fungal reproductive structure) production and green algal biofilm development. Biofilm covered thalli without cephalodia lacked nitrogenase activity and cephalodia at sites where they rarely develop had nitrogenase activities typical for this species. The presence or absence of cephalodia in herbarium specimens of S. vesuvianum suggest that the present-day N-deposition linked gradient in N2-fixing capacity did not exist in the 19th century and largely developed between 1900–1940.
    • Synthesis. We provide clear evidence that N2-fixing capacity in S. vesuvianum has been lost in regions subjected to many decades of enhanced atmospheric N deposition. This loss is consistent with established models of diazotrophy, which identify supply of combined N as an inhibitor of N2-fixation. Progressive depletion of thallus 15N with increasing N deposition is in line with available data indicating that much atmospheric N pollution is 15N-depleted. Rates of nitrogenase activity in S. vesuvianum are low compared to other symbiotic systems and perhaps more likely supplanted by elevated N deposition. We suggest that other ecosystem compartments with low rates of fixation (e.g. soils) might also be susceptible to N pollution and merit investigation.
  • Tracing 33P-labelled organic phosphorus compounds in two soils: New insights into decomposition dynamics and direct use by microbes

    Wasner D, Prommer J, Zezula D, Mooshammer M, Hu Y, Wanek W
    2023 - Frontiers in Soil Science, 3: Article 1097965

    Abstract: 

    Introduction: Organic phosphorus (Po) compounds constitute an important pool in soil P cycling, but their decomposition dynamics are poorly understood. Further, it has never been directly tested whether low molecular weight Po compounds are taken up by soil microbes in an intact form, which reduces the dependence of their P acquisition on extracellular phosphatases.

    Methods: We investigated the short-term fate (24 h) of five 33P-labelled Po compounds (teichoic acids, phospholipids, DNA, RNA and soluble organophosphates) and 33P-labelled inorganic P (Pi) in two soils.

    Results: We found indications that soil microbial breakdown of phosphodiesters was limited by the depolymerization step, and that direct microbial uptake of Po occurred to a substantial extent.

    Discussion: We postulate a trade-off between direct Po uptake and complete extracellular Po mineralization. These findings have profound consequences for our understanding of microbial P cycling in soils.

  • Increase in fine root biomass enhances root exudation by long-term soil warming in a temperate forest

    Heinzle J, Liu X, Tian Y, Kengdo SK, Heinze B, Nirschi A, Borken W, Inselsbacher E, Wanek W, Schindlbacher A
    2023 - Frontiers in Forests and Global Change, 6: Article 1152142

    Abstract: 

    Trees can invest up to one-third of the carbon (C) fixed by photosynthesis into belowground allocation, including fine root exudation into the rhizosphere. It is still unclear how climate and soil warming affect tree root C exudation, in particular quantifying longer-term warming effects remains a challenge. In this study, using a C-free cuvette incubation method, in situ C exudation rates from tree fine roots of a mature spruce dominated temperate forest were measured in regular intervals during the 14th and 15th year of experimental soil warming (+ 4°C). In addition, a short-term temperature sensitivity experiment (up to + 10°C warming within 4 days) was conducted to determine the inherent temperature sensitivity of root exudation. Root exudation rates in the long-term warmed soil (17.9 μg C g–1 root biomass h–1) did not differ from those in untreated soil (16.2 μg C g–1 root biomass h–1). However, a clear increase (Q10 ∼5.0) during the short-term temperature sensitivity experiment suggested that fine root exudation can be affected by short-term changes in soil temperature. The absence of response in long-term warmed soils suggests a downregulation of C exudation from the individual fine roots in the warmed soils. The lack of any relationship between exudation rates and the seasonal temperature course, further suggests that plant phenology and plant C allocation dynamics have more influence on seasonal changes in fine root C exudation. Although exudation rates per g dry mass of fine roots were only marginally higher in the warmed soil, total fine root C exudation per m2 soil surface area increased by ∼30% from 0.33 to 0.43 Mg C ha–1 yr–1 because long-term soil warming has led to an increase in total fine root biomass. Mineralization of additional fine root exudates could have added to the sustained increase in soil CO2 efflux from the warmed forest soil at the experimental site.

  • Functional redundant soil fauna and microbial groups and processes were fairly resistant to drought in an agroecosystem

    Watzinger A, Prommer J, Spiridon A, Kisielinska W, Hood-Nowotny R, Leitner S, Wanek W, Resch C, Heiling M, Murer E, Formayer H, Wawra A, Miloczki J
    2023 - Ecological Processes, 59: 629-641

    Abstract: 

    Climate change scenarios predict more frequent and intense drought periods for 2071 to 2100 for many regions of the world including Austria. Current and predicted lower precipitation scenarios were simulated at a lysimeter station containing a fertile and less fertile agricultural soil for 9 years. 13C and 15N-labeled green manure was added in year 8 with the aim to analyze how the predicted precipitation regime affects soil fauna and microbial groups and consequently nitrogen (N) and carbon (C) cycling. Among the investigated mesofauna (collembola and oribatida), the abundance and biodiversity of oribatida was significantly reduced by drought, possibly because they mainly represent K-strategist species with low mobility and consequently the need to adapt to long-term adverse environmental conditions. Microbial community composition and microbial biomass, investigated by phospholipid fatty acid (PLFA) analysis, was indistinguishable between the current and the predicted precipitation scenarios. Nonetheless, soil 13C-CO2 emissions and soil water 15N-NO3 data revealed decelerated mineralization of green manure under reduced precipitation in the first 2 weeks, but no effects were observed on soil C sequestration or on 13C incorporation into microbial PLFAs in the following 1.2 years. We found that over a 1-year time period, decomposition was rather driven by plant residue availability than water limitation of microorganisms in the investigated agroecosystem. In contrast, N2O emissions were significantly reduced under drought, and green manure derived 15N accumulated in the soil under drought, which might necessitate the adjustment of future fertilization regimes. The impacts of reduced precipitation and drought were less pronounced in the more fertile agricultural soil, due to its greater buffering capacity in terms of water storage and organic matter and nutrient availability.

  • Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments

    Sun L, Li J, Qu L, Wang X, Sang C, Wang J, Sun M, Wanek W, Moorhead DL, Bai E, Wang C
    2023 - Geoderma, 432: Article 116416

    Abstract: 

    Microbial nitrogen use efficiency (NUE), which reflects the proportion of nitrogen (N) taken up to be allocated to microbial biomass and growth, is central to our understanding of soil N cycling. However, the factors influencing microbial NUE remain unclear. Here, we explored the effects of climate factors, soil properties, and microbial variables on microbial NUE based on a survey of soils from 11 locations along a forest transect in eastern China. We found microbial NUE decreased with the ratio of acid phosphatase (AP) activity versus microbial growth rate. This suggested that increased microbial phosphorus acquisition decreased microbial NUE due to increasing investment in AP. However, microbial NUE increased with soil organic carbon content, because soil organic carbon is the source of material and energy for microbial growth and metabolism. Soil pH and mean annual temperature indirectly affected microbial NUE through their effects on the ratio of AP activity relative to microbial growth rate and soil organic carbon content, respectively. Our results improve our understanding and prediction of microbial NUE on a large spatial scale and emphasize the importance of phosphorus in affecting microbial metabolic efficiency.

  • Soil CH4 and N2O response diminishes during decadal soil warming in a temperate mountain forest

    Heinzle J, Kitzler B, Zechmeister-Boltenstern S, Tian Y, Kengdo SW, Wanek W, Borken W, Schindlbacher A
    2023 - Agricultural and Forest Meteorology, 329: Article 109287

    Abstract: 

    Global warming is considered to impact the fluxes of methane (CH4) and nitrous oxide (N2O) between forest soils and the atmosphere, but it is unclear whether the responses change over time. In this study the response of soil CH4 and N2O fluxes to field soil warming (+4 °C) were determined during years 2–5 and 14–16 in a soil warming experiment in a temperate forest. In the second and sixteenth year of soil warming, temperature sensitivities of CH4 and N2O fluxes were assessed in-situ by gradually rising field soil temperatures to ∼10 °C above ambient within a short period of three to four days. Production of dinitrogen (N2) was measured ex-situ in the sixteenth year of warming. Soil warming significantly reduced CH4 uptake (-19.5%) and increased N2O emissions (+41.6%) during the first years of warming, whereas no warming effects on soil CH4 and N2O fluxes were observed during the later years. Dinitrogen production was up to ten times higher than N2O production, though the high spatiotemporal variability masked any significant effects of soil warming on soil N2 fluxes. Temperature sensitivities (Q10) for CH4 uptake and N2O emissions were 2.07 and 4.06, respectively, in the second year of warming and 1.52 and 1.79, respectively, in the sixteenth year of soil warming. The diminishing warming response of the soil N2O fluxes likely were caused by longer-term changes in soil N availability and/or simultaneous acclimation of the soil microbial community to soil warming. Soil moisture was largely unaffected by soil warming, and soil temperature alone was only a weak predictor of soil CH4 fluxes. Methane fluxes therefore can be expected to be generally less affected than N2O fluxes. Overall, our results suggest that soil warming has only limited and transient effects on soil CH4 and N2O fluxes in this type of temperate forest.

  • Water availability is a stronger driver of soil microbial processing of organic nitrogen than tree species composition

    Maxwell TL, Augusto L, Tian Y, Wanek W, Fanin N
    2023 - European Journal of Soil Science, 74: Article e13350

    Abstract: 

    Soil organic nitrogen (N) cycling processes constitute a bottleneck of soil N cycling, yet little is known about how tree species composition may influence these rates, and even less under changes in soil water availability such as those that are being induced by climate change. In this study, we used a 12-year-old tree biodiversity experiment in southwestern France to assess the interactive effects of soil water availability (half of the blocks seasonally irrigated to double precipitation) and tree species composition (monocultural vs. mixed plots of coniferous Pinus pinaster, and of broadleaf Betula pendula). We measured gross protein depolymerisation rates using a novel high-throughput isotope pool dilution method, along with soil microbial biomass carbon and N to calculate microbial biomass-specific activities of soil organic N processes. Overall, high soil water availability led to a 42% increase in soil protein depolymerisation rates compared to the unirrigated plots, but we found no effect of species composition on these soil organic N cycling processes. When investigating the interactive effect of tree species mixing and soil water availability, the results suggest that mixing tree species had a negative effect on soil organic N cycling processes in the non-irrigated blocks subject to dry summers, but that this effect tended to become positive at higher soil water availability in irrigated plots. These results put forth that soil water availability could influence potential tree species mixing effects on soil organic N cycling processes in dry conditions.

  • Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy

    Asemoloye MD, Bello TS, Oladoye PO, Gbadamosi MR, Babarinde SO, Adebami GE, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA
    2023 - Bioengineered, 14: Article 2269328

    Abstract: 

    The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the develop-ment of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well under-stood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombi-nant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.

  • Nutrient controls on carbohydrate and lignin decomposition in beech litter

    Kohl L, Wanek W, Keiblinger K, Hämmerle I, Fuchslueger L, Schneider T, Riedel K, Eberl L, Zechmeister-Boltenstern S, Richter A
    2023 - Geoderma, 429: Article 116276

    Abstract: 

    Nutrient pollution has increased plant litter nutrient concentrations in many ecosystems, which may profoundly impact litter decomposition and change the chemical composition of litter inputs to soils. Here, we report on a mesocosm experiment to study how variations in the nitrogen (N) and phosphorus (P) concentrations in Fagus sylvatica (European beech) litter from four sites differing in bedrock, atmospheric deposition, and climate affect lignin and carbohydrate loss rates and residual litter chemistry. We show with pyrolysis GC/MS and elemental analysis that nutrient concentrations had a strong influence on changes in litter chemistry during early decomposition (0–181 days), when greater lignin loss rates were associated with low P concentrations, whereas carbohydrate and bulk C loss were associated with high N concentrations. Nutrient concentrations, in contrast, did not influence changes in litter chemistry in the later decomposition stage (181–475 days), where the decomposition rates of lignin, carbohydrates, and bulk C all increased with litter N concentration and no differences in decomposition rates between major compound classes were detected. Our data indicate that these differences were related to the transition from increasing to constant or declining microbial biomass, and an associated decrease in microbial dependence on the mobilization of nutrients from the insoluble litter fraction.

  • Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies

    Tian Y, Schindlbacher A, Urbina-Malo C, Shi C, Heinzle J, Kengdo SK, Inselsbacher E, Borken W, Wanek W
    2023 - Soil Biology and Biochemistry, 184: Article 109109

    Abstract: 

    Global warming impacts biogeochemical cycles in terrestrial ecosystems, but it is still unclear how the simultaneous cycling of carbon (C) and nitrogen (N) in soils could be affected in the longer-term. Here, we evaluated how 14 years of soil warming (+4 °C) affected the soil C and N cycle across different soil depths and seasons in a temperate mountain forest. We used H218O incorporation into DNA and 15N isotope pool dilution techniques to determine gross rates of C and N transformation processes. Our data showed different warming effects on soil C and N cycling, and these were consistent across soil depths and seasons. Warming decreased microbial biomass C (−22%), but at the same time increased microbial biomass-specific growth (+25%) and respiration (+39%), the potential activity of β-glucosidase (+31%), and microbial turnover (+14%). Warming reduced gross rates of protein depolymerization (−19%), but stimulated gross N mineralization (+63%) and the potential activities of N-acetylglucosaminidase (+106%) and leucine-aminopeptidase (+46%), and had no impact on gross nitrification (+1%). Microbial C and N use efficiencies were both lower in the warming treatment (−15% and −17%, respectively). Overall, our results suggest that long-term warming drives soil microbes to incorporate less C and N into their biomass (and necromass), and to release more inorganic C and N to the environment, causing lower soil C and N storage in this forest, as indicated by lower soil C and total N contents. The decreases in microbial CUE and NUE were likely triggered by increasing microbial P constraints in warmed soils, limiting anabolic processes and microbial growth and promoting pervasive losses of C and N from the soil.

    Global warming impacts biogeochemical cycles in terrestrial ecosystems, but it is still unclear how the simultaneous cycling of carbon (C) and nitrogen (N) in soils could be affected in the longer-term. Here, we evaluated how 14 years of soil warming (+4 °C) affected the soil C and N cycle across different soil depths and seasons in a temperate mountain forest. We used H218O incorporation into DNA and 15N isotope pool dilution techniques to determine gross rates of C and N transformation processes. Our data showed different warming effects on soil C and N cycling, and these were consistent across soil depths and seasons. Warming decreased microbial biomass C (−22%), but at the same time increased microbial biomass-specific growth (+25%) and respiration (+39%), the potential activity of β-glucosidase (+31%), and microbial turnover (+14%). Warming reduced gross rates of protein depolymerization (−19%), but stimulated gross N mineralization (+63%) and the potential activities of N-acetylglucosaminidase (+106%) and leucine-aminopeptidase (+46%), and had no impact on gross nitrification (+1%). Microbial C and N use efficiencies were both lower in the warming treatment (−15% and −17%, respectively). Overall, our results suggest that long-term warming drives soil microbes to incorporate less C and N into their biomass (and necromass), and to release more inorganic C and N to the environment, causing lower soil C and N storage in this forest, as indicated by lower soil C and total N contents. The decreases in microbial CUE and NUE were likely triggered by increasing microbial P constraints in warmed soils, limiting anabolic processes and microbial growth and promoting pervasive losses of C and N from the soil.

     

  • Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses

    Tian Y, Shi C, Malo CU, Kendo SK, Heinzle J, Inselsbacher E, Ottner F, Borken W, Michel K, Schindlbacher A, Wanek W
    2023 - Nature Communications, 14: Article 864

    Abstract: 

    Phosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C). Long-term warming decreased soil total P pools, likely due to higher outputs of P from soils by increasing net plant P uptake and downward transportation of colloidal and particulate P. Warming increased the sorption strength to more recalcitrant soil P fractions (absorbed to iron oxyhydroxides and clays), thereby further reducing bioavailable P in soil solution. As a response, soil microbes enhanced the production of acid phosphatase, though this was not sufficient to avoid decreases of soil bioavailable P and microbial biomass P (and biotic phosphate immobilization). This study therefore highlights how long-term soil warming triggers changes in biotic and abiotic soil P pools and processes, which can potentially aggravate the P constraints of the trees and soil microbes and thereby negatively affect the C sequestration potential of these forests.

  • Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions

    Shi C, Urbina-Malo C, Tian Y, Heinzle J, Kendo SK, Inselsbacher E, Borken W, Schindlbacher A, Wanek W
    2023 - Global Change Biology, 29: 2188-2202

    Abstract: 

    Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.

  • Uptake, Metabolism, and Accumulation of Tire Wear Particle-Derived Compounds in Lettuce

    Castan S, Sherman A, Peng R, Zumstein MT, Wanek W, Hüffer T, Hofmann T
    2023 - Environmental Science & Technology, 57: 168-178

    Abstract: 

    Tire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), N-phenyl-N′-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L–1 in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions. Concentrations in leaves, roots, and nutrient solution were quantified by triple quadrupole mass spectrometry, and metabolites in the leaves were identified by Orbitrap high resolution mass spectrometry. This study demonstrates that TWP-derived compounds are readily taken up by lettuce with measured maximum leaf concentrations between ∼0.75 (6PPD) and 20 μg g–1 (HMMM). Although these compounds were metabolized in the plant, we identified several transformation products, most of which proved to be more stable in the lettuce leaves than the parent compounds. Furthermore, continuous leaching from TWP led to a resupply and replenishment of the metabolized compounds in the lettuce leaves. The stability of metabolized TWP-derived compounds with largely unknown toxicities is particularly concerning and is an important new aspect for the impact assessment of TWP in the environment.

  • Spectroscopic analysis of sequestered chloroplasts in Elphidium williamsoni (Foraminifera)

    Lintner M, Wildner M, Lintner B, Wanek W, Heinz P
    2023 - Journal of Photochemistry and Photobiology B: Biology, 238: Article 112623

    Abstract: 

    Foraminifera are unicellular, marine organisms that occur worldwide. A very common species in the German Wadden Sea is Elphidium williamsoni. Some foraminifera (such as elphidia) are able to use kleptoplastidy, which allows them to incorporate chloroplasts from their algal food source into their own cell body. The experiments reported here are based on the fact that chlorophyll (a and c) can be detected in the intact cells with spectroscopic methods in the visible spectral range, which allows an indirect investigation of the presence of sequestered chloroplasts. Starving experiments of E. williamsoni in the light (24 h continuous) showed that the greatest decrease in chlorophyll content was recorded within the first 20–30 days. From day 60 on, chlorophyll was hardly detectable. Through subsequent feeding on a renewed algal food source a significant increase in the chlorophyll content in foraminifera was noticed. The degradation of chlorophyll in the dark (24 h continuous darkness) during the starving period was much more complex. Chlorophyll was still detected in the cells after 113 days of starving time. Therefore, we hypotheses that the effect of photoinhibition applies to chloroplasts in foraminifera under continuous illumination.

  • Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil

    Kengdo SK, Ahrens B, Tian Y, Heinzle J, Wanek W, Schindlbacher A, Borken W
    2023 - Science of The Total Environment, 855: Article 15800

    Abstract: 

    Fine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO2). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest. Fine root turnover times of the individual root fractions were estimated with a one-pool model. Soil warming strongly increased fine root production by up to 128 % within one year, but after two years, the production was less pronounced (+35 %). The first-year production was likely very high due to the rapid exploitation of the root-free ingrowth cores. The radiocarbon signatures of fine roots were overall variable among treatments and plots. Soil warming tended to decrease fine root turnover times of all the measured root fractions after 8 and 14 years of warming, and there was a tendency for trees to use older carbon reserves for fine root production in warmed plots. Furthermore, soil warming increased fine root turnover from 50 to 106 g C m−2 yr−1 (based on two different approaches). Our findings suggest that future climate warming may increase carbon input into soils by enhancing fine root turnover. If this increase may partly offset carbon losses by increased mineralization of soil organic matter in temperate forest soils is still unclear and should guide future research.

  • Extracellular enzyme stoichiometry reflects the metabolic C-and P-limitations along a grassland succession on the Loess Plateau in China

    Xue Z, Liu C, Zhou Z, Wanek W
    2022 - Applied Soil Ecology, 179: Article 104594

    Abstract: 

    Soil extracellular enzyme stoichiometry (EES) reflects the biogeochemical balance between microbial metabolic requirements and environmental nutrient availability. Recent research suggests that EES well effect on soil microbial metabolic limitations (SMMLs), however, few field studies have explicitly tested this based on a herbaceous successional chronosequence. We used the EES models to identify the response of SMMLs, and investigated the potential implications of microbial nutritional limitations across the time series (herbaceous succession) and space (transformation interface soil [TIS] and underlying topsoil [UTS] layer) in the grassland restoration series. We show that soil microorganisms were generally limited by C, both in the TIS and UTS. Microbial C-limitation exhibited a unimodal direction, peaking in intermediate successional stages, however, P-limitation presented the opposite trend. During herbaceous succession, microbial P-limitation was more substantial than that in N-limitation. SMMLs gradually transferred from P- to N- and back to P-limitation at later successional stages in the TIS layer. Furthermore, we demonstrate that biotic factors, soil basic index, and soil nutrients explained 92.2 % of the variations in microbial C-limitation and 84.4 % of the variations in microbial P-limitation. Multi–interaction factors exhibited the most significant relative influences of 65.11 % (TIS) and 43 % (UTS) on the SMMLs. Microbial C-limitation was induced by the imbalance between C supply and microbial C demand, whereas the changes in microbial P-limitation were due to the changes in the competition for P between plants and microorganisms. Overall, our findings provide support for microbial C- and P-limitation in the process of herbaceous succession during the restoration. We also highlight the possibility of additive effects on soil SMMLs via interactions of vegetation composition, soil properties, and microbial nutritional demands, which might constrain soil microbial metabolism requirements despite greater living root and litter resource inputs.

  • Isotopically characterised N2O reference materials for use as community standards

    Mohn J, Biasi C, Bodé S, Boeckx P, Brewer PJ, Eggleston S, Geilmann H, Guillevic M, Kaiser J, Kantnerová K, Moossen H, Müller J, Nakagawa M, Pearce R, von Rein I, Steger D, Toyoda S, Wanek W, Wexler SK, Yoshida N, Yu L
    2022 - Rapid Communications in Mass Spectrometry, 36: Article e9296

    Abstract: 

    Rationale

    Information on the isotopic composition of nitrous oxide (N2O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2O isotope Reference Materials (RMs).

    Methods

    Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2O isotope RMs have been developed and their 15N/14N, 18O/16O, 17O/16O ratios and 15N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales.

    Results

    The established N2O isotope RMs offer a wide spread in delta (δ) values: δ15N: 0 to +104‰, δ18O: +39 to +155‰, and δ15NSP: −4 to +20‰. Conversion and uncertainty propagation of δ15N and δ18O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15N(N2O) and δ18O(N2O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15NSP, an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future.

    Conclusions

    A set of seven N2O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17O data for N2O RMs is expected to improve data quality/correction algorithms with respect to δ15NSP and δ15N analysis by mass spectrometry. We anticipate that the N2O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.

  • Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO, warming, and drought

    Maxwell TL, Canarini A, Bogdanovic I, Böckle T, Martin V, Noll L, Prommer J, Séneca J, Simon E, Piepho HP, Herndl M, Pötsch EM, Kaiser C, Richter A, Bahn M, Wanek W
    2022 - Global Change Biology, 28: 2425-2441

    Abstract: 

    Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2, and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15N isotope pool dilution techniques. Whereas eCO2 showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world.

  • Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days

    Liu X, Chen S, Li X, Yang Z, Xiong D, Xu C, Wanek W, Yang Y
    2022 - Geoderma, 427: Article 116139

    Abstract: 

    Litter decomposition is a fundamental ecosystem process, influencing soil carbon storage, nutrient availability, and forest productivity. Climate change may affect litter decomposition and thus nutrient dynamics via altering plant phenology, litter quality, and the composition of soil microbial communities. However, the effects of climate change on litter decomposition are not well understood, especially in tropical and subtropical forest ecosystems, which are less temperature limited. We conducted a manipulative study to assess how soil warming affects litter decomposition rates and its relation to litter chemistry, extracellular enzyme activities, and microbial biomass in an evergreen broad-leaved forest in subtropical China. The temperature at 0–10 cm soil depth was experimentally increased by 4 °C, starting from June 2016 to October 2017. Soil warming did not affect litter mass loss during the initial stage (0–270 day), but reduced litter mass loss by 12.9 % at the later stages (days 350 to 450). Structural equation modeling showed that litter moisture content was reduced by warming, but this was not the main effector leading to the reduction in late-stage litter decomposition in the warming treatment. The model suggested that warming reduced litter decomposition rates likely indirectly, through its negative effects on extractable organic carbon and microbial biomass (e.g., microbial carbon and nitrogen), and on litter enzyme activities (a composite variable of β-glucosidase, cellobiohydrolase, acid phosphatase, and phenoloxidase). These results show that warming may slow down litter carbon cycling, but this subtropical forest ecosystem did not affect litter N and P cycling and soil nutrient availability.

  • Broad- and small-scale environmental gradients drive variation in chemical, but not morphological, leaf traits of vascular epiphytes

    Guzmán-Jacob V, Guerrero-Ramírez NR, Craven D, Paterno GB, Taylor A, Kromer T, Wanek W, Zotz G, Kreft H
    2022 - Functional Ecology, 36: 1858-1872

    Abstract: 

    1. Variation in leaf functional traits along environmental gradients can reveal how vascular epiphytes respond to broad- and small-scale environmental gradients. Along elevational gradients, both temperature and precipitation likely play an important role as drivers of leaf trait variation, but these traits may also respond to small-scale changes in light, temperature and humidity along the vertical environmental gradient within forest canopies. However, the relative importance of broad- and small-scale environmental gradients as drivers of variation in leaf functional traits of vascular epiphytes is poorly understood.
    2. Here, we examined variation in morphological and chemical leaf traits of 102 vascular epiphyte species spanning two environmental gradients along Cofre de Perote mountain in Mexico: (i) a broad-scale environmental gradient approximated by elevation as well as by species' lower and upper elevational limits, and (ii) small-scale environmental gradients using the relative height of attachment of an epiphyte on a host tree as a proxy for variation in environmental conditions within the forest canopy. We also assessed whether variation in morphological and chemical leaf traits along these gradients was consistent across photosynthetic pathways (CAM and C3).
    3. Broad- and small-scale environmental gradients explained more variation in chemical traits (marginal R2: 11%–89%) than in morphological traits (marginal R2: 2%–31%). For example, leaf carbon isotope signatures (δ13C), which reflects water-use efficiency, varied systematically across both environmental gradients, suggesting a decrease in water-use efficiency with increasing lower and upper elevational limits and an increase in water-use efficiency with relative height of attachment. The influence of lower and upper elevational limits on trait variation differed between photosynthetic pathways, except for leaf dry matter content and leaf nitrogen-to-phosphorus ratio. Contrary to our expectations, broad- and small-scale environmental gradients explained minimal variation in morphological leaf traits, suggesting that environmental conditions do not constrain morphological leaf trait values of vascular epiphytes.
    4. Our findings suggest that assessing multiple drivers of leaf trait variation among photosynthetic pathways is key for disentangling the mechanisms underlying responses of vascular epiphytes to environmental conditions.
  • Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil

    Kwatcho Kengdo S, Peršoh D, Schindlbacher A, Heinzle J, Tian Y, Wanek W, Borken W
    2022 - Global Change Biology, 28: 3441-3458

    Abstract: 

    Climate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively. Fine root biomass (FRB) and fine root production were 17% and 128% higher in the warmed plots, respectively, after 14 years. The increase in FRB (13%) was not significant after 8 years of treatment, whereas specific root length, specific root area, and root tip density were significantly higher in warmed plots at both sampling occasions. Soil warming did not affect EcM exploration types and diversity, but changed their community composition, with an increase in the relative abundance of Cenoccocum at 0–10 cm soil depth, a drought-stress-tolerant genus, and an increase in short- and long-distance exploration types like Sebacina and Boletus at 10–20 cm soil depth. Warming increased the root-associated bacterial diversity but did not affect their community composition. Soil warming did not affect nutrient concentrations of fine roots, though we found indications of limited soil phosphorus (P) and potassium (K) availability. Our findings suggest that, in the studied ecosystem, global warming could persistently increase soil carbon inputs due to accelerated fine root growth and turnover, and could simultaneously alter fine root morphology and EcM fungal community composition toward improved nutrient foraging.

  • Putting vascular epiphytes on the traits map

    Hietz P, Wagner K, Nunes Ramos F, Cabral J, Agudelo C, Benavides AM, Cach-Pérez MJ, Cardelús C, Chilpa Galván N, Costa L, de Paula Oliveira R, Einzmann H, Farias R, Guzmán JV, Kattge J, Kessler M, Kirby C, Kreft H, Kromer T, Males J, Monsalve Correa S, Moreno-Chacón M, Petter G, Reyes-Garcia C, Saldana A, Schellenberger Costa D, Taylor A, Velázquez Rosas N, Wanek W, Woods C, Zotz G
    2022 - Journal of Ecology, 110: 340-358

    Abstract: 

    1. Plant functional traits impact the fitness and environmental niche of plants. Major plant functional types have been characterized by their trait spectrum, and the environmental and phylogenetic imprints on traits have advanced several ecological fields. Yet, very few trait data on epiphytes, which represent almost 10% of vascular plants, are available.
    2. We collated 76,561 trait observations for 2,882 species of vascular epiphytes and compared these to non-epiphytic herbs and trees to test hypotheses related to how the epiphytic habit affects traits, and if epiphytes occupy a distinct region in the global trait space. We also compared variation in traits among major groups of epiphytes, and investigated the coordination of traits in epiphytes, ground-rooted herbs and trees.
    3. Epiphytes differ from ground-rooted plants mainly in traits related to water relations. Unexpectedly, we did not find lower leaf nutrient concentrations, except for nitrogen. Mean photosynthetic rates are much lower than in ground-rooted plants and lower than expected from the nitrogen concentrations. Trait syndromes clearly distinguish epiphytes from trees and from most non-epiphytic herbs.
    4. Among the three largest epiphytic taxa, orchids differ from bromeliads and ferns mainly by having smaller and more numerous stomata, while ferns differ from bromeliads by having thinner leaves, higher nutrient concentrations, and lower water content and water use efficiency.
    5. Trait networks differ among epiphytes, herbs and trees. While all have central nodes represented by SLA and mass-based photosynthesis, in epiphytes, traits related to plant water relations have stronger connections, and nutrients other than potassium have weaker connections to the remainder of the trait network. Whereas stem-specific density reflects mechanical support related to plant size in herbs and trees, in epiphytes it mostly reflects water storage and scales with leaf water content.
    6. Synthesis. Our findings advance our understanding of epiphyte ecology, but we note that currently mainly leaf traits are available. Important gaps are root, shoot and whole plant, demographic and gas exchange traits. We suggest how future research might use available data and fill data gaps.
    • We collated 76,561 trait observations for 2,882 species of vascular epiphytes and compared these to non-epiphytic herbs and trees to test hypotheses related to how the epiphytic habit affects traits, and if epiphytes occupy a distinct region in the global trait space. We also compared variation in traits among major groups of epiphytes, and investigated the coordination of traits in epiphytes, ground-rooted herbs and trees.
    • Epiphytes differ from ground-rooted plants mainly in traits related to water relations. Unexpectedly, we did not find lower leaf nutrient concentrations, except for nitrogen. Mean photosynthetic rates are much lower than in ground-rooted plants and lower than expected from the nitrogen concentrations. Trait syndromes clearly distinguish epiphytes from trees and from most non-epiphytic herbs.
    • Among the three largest epiphytic taxa, orchids differ from bromeliads and ferns mainly by having smaller and more numerous stomata, while ferns differ from bromeliads by having thinner leaves, higher nutrient concentrations, and lower water content and water use efficiency.
    • Trait networks differ among epiphytes, herbs and trees. While all have central nodes represented by SLA and mass-based photosynthesis, in epiphytes, traits related to plant water relations have stronger connections, and nutrients other than potassium have weaker connections to the remainder of the trait network. Whereas stem-specific density reflects mechanical support related to plant size in herbs and trees, in epiphytes it mostly reflects water storage and scales with leaf water content.
    • Synthesis. Our findings advance our understanding of epiphyte ecology, but we note that currently mainly leaf traits are available. Important gaps are root, shoot and whole plant, demographic and gas exchange traits. We suggest how future research might use available data and fill data gaps.
  • Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale

    Noll L, zhang S, Zheng Q, Hu Y, Hofhansl F, Wanek W
    2022 - Biogeosciences, 19: 5419-5433

    Abstract: 

    Soil fertility and plant productivity are globally constrained by N availability. Proteins are the largest N reservoir in soils, and the cleavage of proteins into small peptides and amino acids has been shown to be the rate-limiting step in the terrestrial N cycle. However, we are still lacking a profound understanding of the environmental controls of this process. Here we show that integrated effects of climate and soil geochemistry drive protein cleavage across large scales. We measured gross protein depolymerization rates in mineral and organic soils sampled across a 4000 km long European transect covering a wide range of climates, geologies and land uses. Based on structural equation models we identified that soil organic N cycling was strongly controlled by substrate availability, e.g., by soil protein content. Soil geochemistry was a secondary predictor, by controlling protein stabilization mechanisms and protein availability. Precipitation was identified as the main climatic control on protein depolymerization, by affecting soil weathering and soil organic matter accumulation. In contrast, land use was a poor predictor of protein depolymerization. Our results highlight the need to consider geology and precipitation effects on soil geochemistry when estimating and predicting soil N cycling at large scales.

  • Applying the 15N labelling technique to material derived from a landfill simulation experiment to understand nitrogen cycle processes under aerobic and anaerobic conditions

    Fricko N, Wanek W, Fellner J
    2022 - Biodegradation, 33: 557-573

    Abstract: 

    Reactive nitrogen (N) species, such as ammonium (NH4+), nitrate (NO3) and gaseous nitrous oxide (N2O), are released into the environment during the degradation of municipal solid waste (MSW), causing persistent environmental problems. Landfill remediation measures, such as in-situ aeration, may accelerate the degradation of organic compounds and reduce the discharge of ammonium via leachate. Nonetheless, the actual amount of N in the waste material remains relatively constant and a coherent explanation for the decline in leachate ammonium concentrations is still lacking. Hence, the present study aimed to elucidate the dynamics of N and its transformation processes during waste degradation. To this end, the gross rates of organic N mineralization and nitrification were measured using 15N pool dilution in waste material derived from a landfill simulation reactor (LSR) experiment. The results revealed a high potential for N mineralization and nitrification, the latter of which declined with the diminishing amount of extractable ammonium (after aeration). The analysis of the concentration and isotopic composition of N2O formed confirmed incomplete denitrification as the main source for N2O. Moreover, the natural abundance of 15N was investigated in various waste N pools to verify the conclusions drawn from the 15N tracing experiment. δ15N values of total waste N increased during aeration, indicating that nitrification is the major driver for N losses from aerated waste. The application of stable isotopes thereby allowed unprecedented insights into the complex N dynamics in decomposing landfill waste, of their response to aeration and their effect on hydrological versus gaseous loss pathways.

  • Effect of light on the metabolism of the foraminifera Cribroelphidium selseyense lacking photosymbionts and kleptoplasts

    Lintner M, Schagerl M, Lintner B, Wanek W, Keul N, Heinz P
    2022 - Journal of Photochemistry and Photobiology, 11: Article 100133

    Abstract: 

    Foraminifera are essential contributors to the marine carbon and nitrogen cycle. A small group of foraminifera hosts symbiotic microalgae and kleptoplasts and irradiance is a key variable influencing their metabolism. However, the majority of foraminifera is fully heterotrophic, and whether irradiance influences food ingestion patterns has remained an open question. We studied the food uptake of fully heterotrophic Cribroelphidium selseyense specimens exposed to varying light-dark cycles. Specimens obtained from the Baltic Sea were fed with lyophilised, isotopically labelled diatoms from the species of Phaeodactylum triconutum, to estimate the rate of food ingestion. We exposed the specimens to different light-dark cycles (0:24, 8:16, 16:8, 24:0 = light: dark) and irradiance intensities (0, 50, 100 and 200 µmol photons m−2 s−1) in this experiment. Differences in light-dark regime did not affect the food uptake rates of C. selseyense. Irradiance intensity, however, strongly affected food uptake, increasing with incubation time from day 1 to day 15. In parallel, the food uptake decreased with higher irradiance intensity. Therefore, we can conclude irradiance intensity and not the light-dark cycle affected food uptake of fully heterotrophic C. selseyense, leaving the mechanisms of how light intensity regulates food intake being unresolved yet.

  • Soil greenhouse gas fluxes in floodplain forests of the Danube National Park – Effects of flooding and soil microclimate

    Schindlbacher A, Heinzle J, Gollobich G, Wanek W, Michel K, Kitzler K
    2022 - Biogeochemistry, 159: 193-213

    Abstract: 

    The relevance of soil greenhouse gas (GHG) fluxes from temperate floodplain forests has yet remained elusive. We studied the soil methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) dynamics at three forest sites along a flooding gradient in the Danube National Park (Austria) to estimate annual GHG budgets and to assess if and how seasonal flooding affects individual GHG fluxes. Soil surface GHG fluxes were determined along with GHG concentrations in soil air and pore-water at a non-flooded (NF), an infrequently-flooded (IF), and a frequently-flooded (FF) site. Both study years were characterized by dry summers, and only the FF site was flooded during the study period. Soils at all sites were annual CH4 sinks (NF: − 4.50 ± 0.85, IF: − 2.54 ± 0.57, FF: − 0.67 ± 1.06 kg CH4-C ha−1 year−1) and the sink strength correlated positively with soil moisture. Pulse-like CH4 emissions were not observed during or after flooding. Soil N2O fluxes showed large temporal and spatial variations, without any significant differences between sites (average NF: 6.5 ± 7.1, IF: 10.4 ± 14.3, FF: 9.4 ± 10.5 µg N2O-N m−2 h−1). Pulse N2O emissions (up to ~ 80 µg N2O-N m−2 h−1) occurred during freeze/thaw events, but not during or after flooding. Mean annual soil CO2 effluxes at NF and IF were 9.4 ± 1.1 and 9.4 ± 2.1 t C ha−1 year−1, respectively. Soil CO2 efflux was significantly higher at the FF site (18.54 ± 6.21 t C ha−1 year−1). High soil air CO2 concentrations (> 10%) in aerated deeper soil layers indicated a substantial contribution of the usually waterlogged sub-soils to the summertime soil CO2 efflux at the FF site. Overall, our results suggest that the studied temperate floodplain forest soils do not absorb/emit substantially more CH4 and N2O than soils of comparable upland forests, whereas low groundwater level can lead to periodically enhanced CO2 emissions from normally waterlogged soil layers.

  • New Proposal of Epiphytic Bromeliaceae Functional Groups to Include Nebulophytes and Shallow Tanks

    Reyes-Garcia C, Pereira-Zaldívar NA, Espadas-Manrique C, Tamayo-Chim M, Chilpa-Galván N, Cach-Pérez MJ, Ramírez-Medina M, Benavides AM, Hietz P, Zotz G, Andrade JL, Cardelús C, de Paula Oliveira R, Einzmann HJR, Guzmán Jacob V, Kromer T, Pinzón JP, Sarmento Cabral J, Wanek W, Woods C
    2022 - Plants, 11: Article 3151

    Abstract: 

    The Bromeliaceae family has been used as a model to study adaptive radiation due to its terrestrial, epilithic, and epiphytic habits with wide morpho-physiological variation. Functional groups described by Pittendrigh in 1948 have been an integral part of ecophysiological studies. In the current study, we revisited the functional groups of epiphytic bromeliads using a 204 species trait database sampled throughout the Americas. Our objective was to define epiphytic functional groups within bromeliads based on unsupervised classification, including species from the dry to the wet end of the Neotropics. We performed a hierarchical cluster analysis with 16 functional traits and a discriminant analysis, to test for the separation between these groups. Herbarium records were used to map species distributions and to analyze the climate and ecosystems inhabited. The clustering supported five groups, C3 tank and CAM tank bromeliads with deep tanks, while the atmospheric group (according to Pittendrigh) was divided into nebulophytes, bromeliads with shallow tanks, and bromeliads with pseudobulbs. The two former groups showed distinct traits related to resource (water) acquisition, such as fog (nebulophytes) and dew (shallow tanks). We discuss how the functional traits relate to the ecosystems inhabited and the relevance of acknowledging the new functional groups.

  • Increase in carbon input by enhanced fine root turnover in a long-term warmed forest soil

    Kwatcho Kengdo S, Ahrens B, Tian Y, Heinzle J, Wanek W, Schindlbacher A, Borken W
    2022 - Sci Total Environ, 855: Article 158800

    Abstract: 

    Fine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO2). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest. Fine root turnover times of the individual root fractions were estimated with a one-pool model. Soil warming strongly increased fine root production by up to 128 % within one year, but after two years, the production was less pronounced (+35 %). The first-year production was likely very high due to the rapid exploitation of the root-free ingrowth cores. The radiocarbon signatures of fine roots were overall variable among treatments and plots. Soil warming tended to decrease fine root turnover times of all the measured root fractions after 8 and 14 years of warming, and there was a tendency for trees to use older carbon reserves for fine root production in warmed plots. Furthermore, soil warming increased fine root turnover from 50 to 106 g C m-2 yr-1 (based on two different approaches). Our findings suggest that future climate warming may increase carbon input into soils by enhancing fine root turnover. If this increase may partly offset carbon losses by increased mineralization of soil organic matter in temperate forest soils is still unclear and should guide future research.

  • The role of coupled DNRA-Anammox during nitrate removal in a highly saline lake

    Valiente N, Jirsa F, Hein T, Wanek W, Prommer J, Bonin P, Gómez-Alday JJ
    2022 - Science of The Total Environment, 806: Article 150726

    Abstract: 

    Nitrate (NO3) removal from aquatic ecosystems involves several microbially mediated processes, including denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonium oxidation (anammox), controlled by slight changes in environmental gradients. In addition, some of these processes (i.e. denitrification) may involve the production of undesirable compounds such as nitrous oxide (N2O), an important greenhouse gas. Saline lakes are prone to the accumulation of anthropogenic contaminants, making them highly vulnerable environments to NO3 pollution. The aim of this paper was to investigate the effect of light and oxygen on the different NO3 removal pathways under highly saline conditions. For this purpose, mesocosm experiments were performed using lacustrine, undisturbed, organic-rich sediments from the Pétrola Lake (Spain), a highly saline waterbody subject to anthropogenic NO3 pollution. The revised 15N-isotope pairing technique (15N-IPT) was used to determine NO3 sink processes. Our results demonstrate for the first time the coexistence of denitrification, DNRA, and anammox processes in a highly saline lake, and how their contribution was determined by environmental conditions (oxygen and light). DNRA, and especially denitrification to N2O, were the dominant nitrogen (N) removal pathways when oxygen and/or light were present (up to 82%). In contrast, anoxia and darkness promoted NO3 reduction by DNRA (52%), combined with N loss by anammox (28%). Our results highlight the role of coupled DNRA-anammox, which has not yet been investigated in lacustrine sediments. We conclude that anoxia and darkness favored DNRA and anammox processes over denitrification and therefore to restrict N2O emissions to the atmosphere.

  • Functional traits of a rainforest vascular epiphyte community: trait covariation and indications for host specificity

    Wagner K, Wanek W, Zotz G
    2021 - Diversity, 13: 97

    Abstract: 

    Trait matching between interacting species may foster diversity. Thus, high epiphyte diversity in tropical forests may be partly due to the high diversity of trees and some degree of host specificity. However, possible trait matching between epiphyte and host is basically unexplored. Since the epiphytic habitat poses particular challenges to plants, their trait correlations should differ from terrestrial plants, but to what extent is unclear as epiphytes are underrepresented or missing in the large trait databases. We quantified 28 traits of 99 species of vascular epiphytes in a lowland forest in Panama that were related to plant size, leaf, stem, and root morphology; photosynthetic mode; and nutrient concentrations. We analyzed trait covariation, community weighted means, and functional diversity for assemblages on stems and in crowns of four tree species. We found intriguing differences between epiphytes and terrestrial plants regarding trait covariation in trait relations between plant maximal height, stem specific density, specific root length, and root tissue den-sity, i.e., stem and root economic spectra. Regarding host specificity, we found strong evidence for environmental filtering of epiphyte traits, but only in tree crowns. On stems, community weighted means differed in only one case, whereas > 2/3 of all traits differed in tree crowns. Although we were only partly able to interpret these differences in the light of tree trait differences, these findings mark an important step towards a functional understanding of epiphyte host specificity.

  • No effect of long-term soil warming on diffusive soil inorganic and organic nitrogen fluxes in a temperate forest soil

    Heinzle J, Wanek W, Tian Y, Kwatcho-Kengdo S, Borken W, Schindlbacher A, Inselsbacher E
    2021 - Soil Biology and Biochemistry, 158: Article 108261

    Abstract: 

    Climate warming affects nitrogen (N) cycling in forest soils, but implications for plant available N have remained unclear. We estimated in situ diffusive fluxes of amino acids and inorganic N in a temperate forest soil after 14 years of soil warming. Results from four sampling campaigns (n = 1152 microdialysis samples) during the growing season showed no effect of warming on diffusive N fluxes. Diffusive NH4+ fluxes increased from spring towards autumn while NO3 fluxes followed an opposite trend. Overall, the proportion of amino acids in the total diffusive N flux was low (13–30%) in this carbonate soil compared to other temperate and boreal forest soils.

  • An unexpected source of nitrogen for root uptake: positively charged amino acids dominate soil diffusive nitrogen fluxes. Commentary.

    Inselbacher E, Wanek W
    2021 - New Phytologist, 231: 2104-2106

    Abstract: 

    This article is a Commentary on Homyak et al. (2021), 231: 2162–2173.

     


    Soils typically contain a large variety of nitrogen (N) forms, including inorganic N and a range of organic N compounds of varying molecular size (Warren, 2013). Inorganic N was long been considered to constitute the main source of N for plants, but this view has changed considerably since plants were shown to be capable of directly taking up and metabolizing organic N forms, including amino acids, peptides, proteins and quaternary ammonium compounds (Näsholm et al., 2009; Warren, 2013). Amino acid uptake especially has been demonstrated in every plant species studied thus far and the underlying uptake mechanisms have been investigated extensively (Näsholm et al., 2009; Narcy et al., 2013). Yet even if plants have the potential to take up amino acids, those N forms first have to be bioavailable and have to be consistently replenished at root surfaces. However, reliably estimating such N availability is challenging due to the sheer complexity of soils and plant root systems.


  • Nitrogen Kinetic Isotope Effects of Nitrification by the Complete Ammonia Oxidizer Nitrospira inopinata

    Liua S, Jung MY, zhang S, Wagner M, Daims H, Wanek W
    2021 - mSphere, 6: Article e00634-21

    Abstract: 

    Analysis of nitrogen isotope fractionation effects is useful for tracing biogeochemical nitrogen cycle processes. Nitrification can cause large nitrogen isotope effects through the enzymatic oxidation of ammonia (NH3) via nitrite (NO2) to nitrate (NO3) (15εNH4+→NO2- and 15εNO2-→NO3-). The isotope effects of ammonia-oxidizing bacteria (AOB) and archaea (AOA) and of nitrite-oxidizing bacteria (NOB) have been analyzed previously. Here, we studied the nitrogen isotope effects of the complete ammonia oxidizer (comammox) Nitrospira inopinata that oxidizes NH3 to NO3. At high ammonium (NH4+) availability (1 mM) and pH between 6.5 and 8.5, its 15εNH4+→NO2- ranged from −33.1 to −27.1‰ based on substrate consumption (residual substrate isotopic composition) and −35.5 to −31.2‰ based on product formation (cumulative product isotopic composition), while the 15εNO2-→NO3- ranged from 6.5 to 11.1‰ based on substrate consumption. These values resemble isotope effects of AOB and AOA and of NOB in the genus Nitrospira, suggesting the absence of fundamental mechanistic differences between key enzymes for ammonia and nitrite oxidation in comammox and canonical nitrifiers. However, ambient pH and initial NH4+ concentrations influenced the isotope effects in N. inopinata. The 15εNH4+→NO2- based on product formation was smaller at pH 6.5 (−31.2‰) compared to pH 7.5 (−35.5‰) and pH 8.5 (−34.9‰), while 15εNO2-→NO3- was smaller at pH 8.5 (6.5‰) compared to pH 7.5 (8.8‰) and pH 6.5 (11.1‰). Isotopic fractionation via 15εNH4+→NO2- and 15εNO2-→NO3- was smaller at 0.1 mM NH4+ compared to 0.5 to 1.0 mM NH4+. Environmental factors, such as pH and NH4+ availability, therefore need to be considered when using isotope effects in 15N isotope fractionation models of nitrification.

  • The effect of salinity, light regime and food source on C and N uptake in a benthic foraminifera

    Lintner M, Lintner B, Wanek W, Keul N, Heinz P
    2021 - Biogeosciences, 18: 1395–1406

    Abstract: 

    Foraminifera are unicellular organisms that play an important role in marine organic matter cycles. Some species are able to isolate chloroplasts from their algal food source and incorporate them as kleptoplasts into their own metabolic pathways, a phenomenon known as kleptoplastidy. One species showing this ability is Elphidium excavatum, a common foraminifer in the Kiel Fjord, Germany. The Kiel Fjord is fed by several rivers and thus forms a habitat with strongly fluctuating salinity. Here, we tested the effects of the food source, salinity and light regime on the food uptake (via 15N and 13C algal uptake) in this kleptoplast-bearing foraminifer. In our study E. excavatum was cultured in the lab at three salinity levels (15, 20 and 25) and uptake of C and N from the food source Dunaliella tertiolecta (Chlorophyceae) and Leyanella arenaria (Bacillariophyceae) were measured over time (after 3, 5 and 7 d). The species was very well adapted to the current salinity of the sampling region, as both algal N and C uptake was highest at a salinity of 20. It seems that E. excavatum coped better with lower than with higher salinities. The amount of absorbed C from the green algae D. tertiolecta showed a tendency effect of salinity, peaking at a salinity of 20. Nitrogen uptake was also highest at a salinity of 20 and steadily increased with time. In contrast, C uptake from the diatom L. arenaria was highest at a salinity of 15 and decreased at higher salinities. We found no overall significant differences in C and N uptake from green algae vs. diatoms. Furthermore, the food uptake at a light–dark rhythm of 16:8h was compared to continuous darkness. Darkness had a negative influence on algal C and N uptake, and this effect increased with incubation time. Starving experiments showed a stimulation of food uptake after 7 d. In summary, it can be concluded that E. excavatum copes well with changes of salinity to a lower level. For changes in light regime, we showed that light reduction caused a decrease of C and N uptake by E. excavatum.

  • Leaf trait co-variation and trade-offs in gallery forest C3 and CAM epiphytes

    Oliveira RdP, Zotz G, Wanek W, Franco AC
    2021 - Biotropica, 3: 520–535

    Abstract: 

    Despite their unique adaptations to thrive in canopy environments without access to soil resources, epiphytes are underrepresented in studies of functional traits and of functional composition of tropical plant communities. We investigated functional traits of spermatophytic (seed‐bearing) C3 and CAM epiphyte communities in flooded and non‐flooded gallery forests in Central Brazil. The two forest types differ in floristic, structure, microclimate, and edaphic conditions. We studied plant size, leaf thickness, leaf dry matter content (LDMC), leaf water content, leaf area (LA), specific leaf area (SLA), leaf C, N, P, K, Mg, and Ca, and stable isotope ratios (δ13C and δ15N). Because photosynthetic pathway (C3 or CAM) is an important aspect of ecological differentiation for spermatophytic epiphytes, we expected that functional trait syndromes in a multivariate space would be more associated with photosynthetic pathway than forest type, and changes in abundance of C3 and CAM epiphytes would drive functional trait composition at the community level. C3 and CAM epiphytes segregated in the multivariate trait space; however, more complex functional typologies were also evident. Despite lower light levels, CAM epiphytes were more abundant in the flooded gallery forest. There, they accounted for 80% of all individuals, whereas C3 epiphytes dominated in the non‐flooded forest. These large differences in the proportion of CAM and C3 epiphytes strongly affected functional trait values at the community level, despite very little intraspecific variation in trait values between forest types for species that occurred in both forests.

  • Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica

    Oberleitner F, Egger C, Oberdorfer S, Dullinger S, Wanek W, Hietz P
    2021 - Forest Ecology and Management, 479: Article 118580

    Abstract: 

    Tropical secondary forests comprise about half of the world’s tropical forests and are important as carbon sinks and to conserve biodiversity. Their rate of recovery varies widely; however, particularly older secondary forests are difficult to date so that the recovery rate is uncertain. As a consequence, factors affecting recovery are difficult to analyse. We used aerial surveys going back to 1968 to date 12 secondary forests in the wet tropics of SW Costa Rica and evaluated the recovery of aboveground biomass, tree species richness and tree species composition in relation to nearby old-growth forests and previous land use. To confirm the validity of the space-for-time substitution, the plots were re-censused after four years. We found fast rates of aboveground biomass accumulation, especially in the first years of succession. After 20 years AGB had reached c. 164 Mg/ha equivalent to 52% of the biomass in old-growth forests in the region. Species richness increased at a slower pace and had reached c. 31% of old-growth forests after 20 years. Recovery rates differed substantially among forests, with biomass at least initially recovering faster in forests after clearcuts whereas species numbers increased faster in forests recovering from pastures. Biomass recovery was positively related to the forest cover in the vicinity and negatively to species richness, whereas species richness was related to soil parameters. The change during the four years between the censuses is broadly in line with the initial chronosequence. While the recovery of tropical secondary forests has been studied in many places, our study shows that various environmental parameters affect the speed of recovery, which is important to include in efforts to manage and restore tropical landscapes.

  • Isotopic Elucidation of Microbial Nitrogen Transformations in Forest Soils

    Xu S-Q, Liu X-Y, Sun Z-C, Hu C-C, Wanek W, Koba K
    2021 - Global Biogeochemical Cycles, 35: Article e2021GB00707

    Abstract: 

    Soil nitrogen (N) transformations between labile N forms (extractable organic N [EON], ammonium [NH4+], and nitrate [NO3]) regulate soil N availability. However, it has long been difficult to quantify the transformations of total soil organic and labile N forms in soils, which has left large uncertainties in evaluating atmospheric N deposition effects on soil N dynamics. Based on concentrations and natural abundances of N isotopes of soil organic N, EON, NH4+, and NO3 across 11 forests with variant N deposition levels, we established a quantitative isotopic framework to estimate the fractions of soil N depolymerization (fD), mineralization (fM), nitrification (fN), and of NO3 losses (fL) via denitrification and leaching. Based on the fractions, the gross production and storage of corresponding soil labile N were estimated for forests of China and Japan. We found that fDfM, and fN increased, while fL decreased with the increase of N deposition among the study forests. And the contribution of denitrification (relative to the NO3 leaching) to total NO3 losses also increased with increasing N deposition. Our method provides new and straightforward insights into the present soil N transformations and allows to evaluate the soil N status. These findings are useful for modeling forest N cycles under different N deposition regimes.

  • Cyanate is a low abundance but actively cycled nitrogen compound in soil

    Mooshammer M, Wanek W, Jones S, Richter A, Wagner W
    2021 - Communications Earth & Environment, 2: Article 161

    Abstract: 

    Cyanate can serve as a nitrogen and/or carbon source for different microorganisms and as an energy source for autotrophic ammonia oxidizers. However, the extent of cyanate availability and utilisation in terrestrial ecosystems and its role in biogeochemical cycles is poorly known. Here we analyse cyanate concentrations in soils across a range of soil types, land management practices and climates. Soil cyanate concentrations were three orders of magnitude lower than ammonium or nitrate. We determined cyanate consumption in a grassland and rice paddy soil using stable isotope tracer experiments. We find that cyanate turnover was rapid and dominated by biotic processes. We estimated that in-situ cyanate production rates were similar to those associated with urea fertilizer decomposition, a major source of cyanate in the environment. We provide evidence that cyanate is actively turned over in soils and represents a small but continuous nitrogen/energy source for soil microbes.

  • Denitrification is the major nitrous acid production pathway in boreal agricultural soils

    Bhattarai HR, Wanek W, Siljanen H, Ronkainen J, Liimatainen M, Hu Y, Nykänen H, Biasi C, Maljanen M
    2021 - Communications Earth and Environment, 2: 54

    Abstract: 

    Nitrous acid (HONO) photolysis produces hydroxyl radicals—a key atmospheric oxidant. Soils are strong HONO emitters, yet HONO production pathways in soils and their relative contributions are poorly constrained. Here, we conduct 15N tracer experiments and isotope pool dilution assays on two types of agricultural soils in Finland to determine HONO emission fluxes and pathways. We show that microbial processes are more important than abiotic processes for HONO emissions. Microbial nitrate reduction (denitrification) considerably exceeded ammonium oxidation as a source of nitrite—a central nitrogen pool connected with HONO emissions. Denitrification contributed 97% and 62% of total HONO fluxes in low and high organic matter soil, respectively. Microbial ammonium oxidation only produced HONO in high organic matter soil (10%). Our findings indicate that microbial nitrate reduction is an important HONO production pathway in aerobic soils, suggesting that terrestrial ecosystems favouring it could be HONO emission hotspots, thereby influencing atmospheric chemistry.

  • Glacier forelands reveal fundamental plant and microbial controls on short-term ecosystem nitrogen retention

    de Vries F, Thion C, Bahn M, Pinto BB, Cecillon S, Frey B, Grant H, Nicol G, Wanek W, Prosser J, Bardgett R
    2021 - Journal of Ecology, 109: 3710-3723

    Abstract: 

     

    1. Human activities have massively increased the amount of reactive nitrogen in the biosphere, which is leading to increased nitrogen (N) inputs in terrestrial ecosystems. The retention of N is a crucial ecosystem function of both managed and natural ecosystems, and there is a long history of experimental, observational, and conceptual studies identifying its major controls. Yet, the plant and soil microbial controls on the retention of added N remain elusive.
    2. Here, we used three ecosystem chronosequences in front of retreating glaciers in the European Alps to test our hypothesis that the retention of added reactive 15N increases as succession proceeds, and to identify the plant and microbial controls on ecosystem N retention.
    3. We found that the uptake and retention of N did not change during succession, despite consistent changes in plant, soil, and microbial properties with increasing time since deglaciation. Instead, we found that plant and microbial properties that remained constant during succession controlled 15N uptake and retention: low root and microbial C/N ratios, as well as high root biomass, increased plant and microbial uptake of added N. In addition, high soil concentrations of nitrate and ammonium reduced the uptake of N in microbes and roots, respectively.
    4. Synthesis. Our results demonstrate that plant and microbial N demand, as well as soil N availability, drive the short-term retention of added N during succession in glacier forelands. This finding represents an advance in our understanding of the fundamental controls on ecosystem N retention and the role of plant-microbial interactions in this process. Such understanding is crucial for predicting and mitigating the response of terrestrial ecosystems to the ever-increasing amounts of reactive N in the biosphere.

     

    1. Human activities have massively increased the amount of reactive nitrogen in the biosphere, which is leading to increased nitrogen (N) inputs in terrestrial ecosystems. The retention of N is a crucial ecosystem function of both managed and natural ecosystems, and there is a long history of experimental, observational, and conceptual studies identifying its major controls. Yet, the plant and soil microbial controls on the retention of added N remain elusive.
    2. Here, we used three ecosystem chronosequences in front of retreating glaciers in the European Alps to test our hypothesis that the retention of added reactive 15N increases as succession proceeds, and to identify the plant and microbial controls on ecosystem N retention.
    3. We found that the uptake and retention of N did not change during succession, despite consistent changes in plant, soil, and microbial properties with increasing time since deglaciation. Instead, we found that plant and microbial properties that remained constant during succession controlled 15N uptake and retention: low root and microbial C/N ratios, as well as high root biomass, increased plant and microbial uptake of added N. In addition, high soil concentrations of nitrate and ammonium reduced the uptake of N in microbes and roots, respectively.
    4. Synthesis. Our results demonstrate that plant and microbial N demand, as well as soil N availability, drive the short-term retention of added N during succession in glacier forelands. This finding represents an advance in our understanding of the fundamental controls on ecosystem N retention and the role of plant-microbial interactions in this process. Such understanding is crucial for predicting and mitigating the response of terrestrial ecosystems to the ever-increasing amounts of reactive N in the biosphere.
  • Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration

    Meeran K, Ingrisch J, Reinthaler D, Canarini A, Müller L, Pötsch E, Richter A, Wanek W, Bahn M
    2021 - Global Change Biology, 27: 3230-3243

    Abstract: 

    Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2, drought × eT_eCO2) on ecosystem C dynamics. We performed two in situ 13CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2, but reduced the small fraction remaining in soil under eT_eCO2. After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.

  • Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage

    Hofhansl F, Chacón-Madrigal E, Fuchslueger L, Jenking D, Morera-Beita A, Plutzar C, Silla F, Andersen KM, Buchs DM, Dullinger S, Fiedler K, Franklin O, Hietz P, Huber W, Quesada CA, Rammig A, Schrodt F, Vincent AG, Weissenhofer A, Wanek W
    2020 - Scientific Reports, 10: Article 5066

    Abstract: 

    Tropical rainforests harbor exceptionally high biodiversity and store large amounts of carbon in vegetation biomass. However, regional variation in plant species richness and vegetation carbon stock can be substantial, and may be related to the heterogeneity of topoedaphic properties. Therefore, aboveground vegetation carbon storage typically differs between geographic forest regions in association with the locally dominant plant functional group. A better understanding of the underlying factors controlling tropical forest diversity and vegetation carbon storage could be critical for predicting tropical carbon sink strength in response to projected climate change. Based on regionally replicated 1-ha forest inventory plots established in a region of high geomorphological heterogeneity we investigated how climatic and edaphic factors affect tropical forest diversity and vegetation carbon storage. Plant species richness (of all living stems >10 cm in diameter) ranged from 69 to 127 ha−1 and vegetation carbon storage ranged from 114 to 200 t ha−1. While plant species richness was controlled by climate and soil water availability, vegetation carbon storage was strongly related to wood density and soil phosphorus availability. Results suggest that local heterogeneity in resource availability and plant functional composition should be considered to improve projections of tropical forest ecosystem functioning under future scenarios.

  • Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration

    Canarini A, Wanek W, Watzka M, Sandén T, Spiegel H, Šantrůček J, Schnecker J
    2020 - Global Change Biology, 9: 5333-5341

    Abstract: 

    Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the “Birch effect”). We developed a new method based on in vivo 18O‐water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct 18O‐liquid water addition) in moist and air‐dry soils. We determined the time kinetics and calculated the average 18O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from 18O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air‐dry or moist). The proposed 18O‐vapor equilibration method provided similar results as the current method of liquid 18O‐water addition when used for moist soils. However, when applied to air‐dry soils the liquid 18O‐water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.

  • Direct measurement of the in situ decomposition of microbial-derived soil organic matter

    Hu Y, Zheng Q, Noll L, zhang S, Wanek W
    2020 - Soil Biology and Biochemistry, 141: Article 107660

    Abstract: 

    Soil organic matter (SOM) is the dominant reservoir of terrestrial organic carbon and nitrogen, and microbial necromass represents a primary input to it. However, knowledge of stabilization mechanisms and direct measurements of the decomposition of microbial-derived SOM are lacking. Here we report a novel 15N isotope pool dilution approach using labeled amino sugars and muropeptides as tracers to quantify the decomposition of proteins and microbial cell walls, which allows to estimate in situ decomposition rates of microbial-derived SOM. Our results demonstrate that microbial cell walls are as recalcitrant as soil protein, exhibiting comparable turnover times across various ecosystems. The bacterial peptidoglycan in soils was primarily decomposed to muropeptides which can be directly utilized by microbes without being further depolymerized to free amino compounds. Moreover, bacterial peptidoglycan decomposition was correlated with soil microbial biomass while fungal chitin and soil protein decomposition were correlated with high soil pH and fine soil texture. This approach thereby provides new insights into the decomposition pathways and stabilization mechanisms of microbial-derived SOM constituents pertaining to SOM persistence.

  • Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity

    Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A
    2020 - Global Change Biology, 2: 669-681

    Abstract: 

    Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.

  • Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment

    Simon E, Canarini A, Martin V, Séneca J, Böckle T, Reinthaler D, Pötsch E M, Piepho H-P, Bahn M, Wanek W, Richter A
    2020 - Communications Biology, 3: article 584

    Abstract: 

    Microbial growth and carbon use efficiency (CUE) are central to the global carbon cycle, as microbial remains form soil organic matter. We investigated how future global changes may affect soil microbial growth, respiration, and CUE. We aimed to elucidate the soil microbial response to multiple climate change drivers across the growing season and whether effects of multiple global change drivers on soil microbial physiology are additive or interactive. We measured soil microbial growth, CUE, and respiration at three time points in a field experiment combining three levels of temperature and atmospheric CO2, and a summer drought. Here we show that climate change-driven effects on soil microbial physiology are interactive and season-specific, while the coupled response of growth and respiration lead to stable microbial CUE (average CUE = 0.39). These results suggest that future research should focus on microbial growth across different seasons to understand and predict effects of global changes on soil carbon dynamics.

  • Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite

    Mooshammer M, Alves RJE, Bayer B, Melcher M, Stieglmeier M, Jochum L, Rittmann SK-MR, Watzka M, Schleper C, Herndl G, Wanek W
    2020 - Frontiers in microbiology, 11: Article 1710

    Abstract: 

    The naturally occurring nitrogen (N) isotopes, 15N and 14N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO2), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process. However, the kinetic isotope effect of AMO, or εAMO, has been typically determined based on isotope kinetics during product formation (cumulative product, NO2) alone, which may have overestimated εAMO due to possible accumulation of chemical intermediates and alternative sinks of ammonia/ammonium (NH3/NH4+). Here, we analyzed 15N isotope fractionation during archaeal ammonia oxidation based on both isotopic changes in residual substrate (RS, NH4+) and cumulative product (CP, NO2) pools in pure cultures of the soil strain Nitrososphaera viennensis EN76 and in highly enriched cultures of the marine strain Nitrosopumilus adriaticus NF5, under non-limiting substrate conditions. We obtained εAMO values of 31.9–33.1‰ for both strains based on RS (δ15NH4+) and showed that estimates based on CP (δ15NO2) give larger isotope fractionation factors by 6–8‰. Complementary analyses showed that, at the end of the growth period, microbial biomass was 15N-enriched (10.1‰), whereas nitrous oxide (N2O) was highly 15N depleted (−38.1‰) relative to the initial substrate. Although we did not determine the isotope effect of NH4+ assimilation (biomass formation) and N2O production by AOA, our results nevertheless show that the discrepancy between εAMO estimates based on RS and CP might have derived from the incorporation of 15N-enriched residual NH4+ after AMO reaction into microbial biomass and that N2O production did not affect isotope fractionation estimates significantly.

  • Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and CO2, but strongly affected by drought

    Séneca J, Pjevac P, Canarini A, Herbold CW, Zioutis C, Dietrich M, Simon E, Prommer J, Bahn M, Pötsch EM, Wagner M, Wanek W, Richter A
    2020 - The ISME Journal, 14: 3038-3053

    Abstract: 

    Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature. During drought however, process rates were increased or at least maintained. At the same time, the abundance of active AOB increased probably due to higher NH4+ availability. Both, AOA and comammox Nitrospira decreased in response to drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N cycling.

  • Resistant Soil Microbial Communities Show Signs of Increasing Phosphorus Limitation in Two Temperate Forests After Long-Term Nitrogen Addition

    Forstner SJ, Wechselberger V, Stecher S, Müller S, Keiblinger KM, Wanek W, Schleppi P, Gundersen P, Tatzber M, Gerzabek MH, Zechmeister­‐Boltenstern S
    2019 - Frontiers in Forests and Global Change, 2: Article 73

    Abstract: 

    Forest soils harbor diverse microbial communities responsible for the cycling of elements including carbon (C), nitrogen (N), and phosphorus (P). Conversely, anthropogenic N deposition can negatively feed back on soil microbes and reduce soil organic matter (SOM) decomposition. Mechanistically, this can include reductions of decomposer biomass, especially fungi, and decreases in activities of lignin-modifying enzyme (LMEs). Moreover, N inputs can lower resource C:N and thus decrease the C:N imbalance between microbial decomposers and their resources. As a result, microbially-mediated decomposition might slow down, resulting in larger SOM pools with consequences for ecosystem nutrition and climate regulation. Here, we studied the long-term impact of experimental N addition on soil microbes and microbially-mediated decomposition in two coniferous forests in Switzerland and Denmark. We measured microbial biomass C and N, phospholipid fatty acid (PLFA) biomarkers and potential enzyme activities related to C, N, and P acquisition along the topsoil profile (0–30 cm). In particular, we investigated shifts in microbial C:N homeostasis and relative C:N:P limitation. Contrary to prevailing theory, microbial biomass and community composition were remarkably resistant against two decades of 750 and 1,280 kg ha−1 of cumulative N inputs at the Swiss and Danish site, respectively. While N reduced fungal-specific PLFAs and lowered fungi-to-bacteria (F:B) ratios in some (mainly organic) horizons where soil organic carbon (SOC) has accumulated, it increased F:B ratios in other (mainly mineral) horizons where SOC has declined. We did not find a consistent reduction of LME activities in response to N. Rather, relationships between LME activities and SOC concentrations were largely unaffected by N addition. This questions prevalent theories of lignin decomposition and SOC storage under elevated N inputs. By using C:N stoichiometry, we further show that microbial communities responded in part non-homeostatically to decreasing resource C:N, in addition to a likely increase in their carbon use efficiency and a decrease in nitrogen use efficiency. While the expected increased allocation to C- and decreased allocation to N-acquiring enzymes was not found, microbial investment in P acquisition (acid phosphatase activity) increased in the nutrient-poor Podzol (but not in the nutrient-rich Gleysol). Enzyme vector analysis showed decreasing C but increasing P limitation of soil microbial communities at both sites. We conclude that simulated N deposition led to physiological adaptations of soil microbial communities across the topsoil profile in two independent experiments, with long-term implications for tree nutrition and SOC sequestration. However, we expect that microbial adaptations are not endless and may reach a tipping point when ecosystems experience nitrogen saturation.

  • Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization

    zhang S, Zheng Q, Noll L, Hu Y, Wanek W
    2019 - Soil Biology and Biochemistry, 135: 304-315

    Abstract: 

    Microbial nitrogen use efficiency (NUE) is the efficiency by which microbes allocate organic N acquired to biomass formation relative to the N in excess of microbial demand released through N mineralization. Microbial NUE thus is critical to estimate the capacity of soil microbes to retain N in soils and thereby affects inorganic N availability to plants and ecosystem N losses. However, how soil temperature and soil moisture/O2 affect microbial NUE to date is not clear. Therefore, two independent incubation experiments were conducted with soils from three land uses (cropland, grassland and forest) on two bedrocks (silicate and limestone). Soils were exposed to 5, 15 and 25 °C overnight at 60% water holding capacity (WHC) or acclimated to 30 and 60% WHC at 21% O2 and to 90% WHC at 1% O2 over one week at 20 °C. Microbial NUE was measured as microbial growth over microbial organic N uptake (the sum of growth N demand and gross N mineralization). Microbial NUE responded positively to temperature increases with Q10 values ranging from 1.30 ± 0.11 to 2.48 ± 0.67. This was due to exponentially increasing microbial growth rates with incubation temperature while gross N mineralization rates were relatively insensitive to temperature increases (Q10 values 0.66 ± 0.30 to 1.63 ± 0.15). Under oxic conditions (21% O2), microbial NUE as well as gross N mineralization were not stimulated by the increase in soil moisture from 30 to 60% WHC. Under suboxic conditions (90% WHC and 1% O2), microbial NUE markedly declined as microbial growth rates were strongly negatively affected due to increasing microbial energy limitation. In contrast, gross N mineralization rates increased strongly as organic N uptake became in excess of microbial growth N demand. Therefore, in the moisture/O2 experiment microbial NUE was mainly regulated by the shift in O2 status (to suboxic conditions) and less affected by increasing water availability per se. These temperature and moisture/O2 effects on microbial organic N metabolism were consistent across the soils differing in bedrock and land use. Overall it has been demonstrated that microbial NUE was controlled by microbial growth, and that NUE controlled gross N mineralization as an overflow metabolism when energy (C) became limiting or N in excess in soils. This study thereby greatly contributes to the understanding of short-term environmental responses of microbial community N metabolism and the regulation of microbial organic-inorganic N transformations in soils.

  • Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content

    Noll L, zhang S, Zheng Q, Hu Y, Wanek W
    2019 - Soil Biology and Biochemistry, 133: 37-49

    Abstract: 

    Proteins constitute the single largest soil organic nitrogen (SON) reservoir and its decomposition drives terrestrial N availability. Protein cleavage by extracellular enzymes is the rate limiting step in the soil organic N cycle and can be controlled by extracellular enzyme production or protein availability/stabilization in soil. Both controls can be affected by geology and land use, as well as be vulnerable to changes in soil temperature and moisture/O2. To explore major controls of soil gross protein depolymerization we sampled six soils from two soil parent materials (calcareous and silicate), where each soil type included three land uses (cropland, pasture and forest). Soil samples were subjected to three temperature treatments (5, 15, 25 °C at 60% water-holding capacity (WHC) and aerobic conditions) or three soil moisture/O2 treatments (30 and 60% WHC at 21% O2, 90% WHC at 1% O2, at 20 °C) in short-term experiments. Samples were incubated for one day in the temperature experiment and for one week in the moisture/O2experiment. Gross protein depolymerization rates were measured by a novel 15N isotope pool dilution approach. The low temperature sensitivity of gross protein depolymerization, the lack of relationship with protease activity and strong effects of soil texture and pHdemonstrate that this process is constrained by organo-mineral associations and not by soil enzyme content. This also became apparent from the inverse effects in calcareous and silicate soils caused by water saturation/O2 limitation. We highlight that the specific soil mineralogy influenced the response of gross depolymerization rates to water saturation/O2 limitation, causing (I) increasing gross depolymerization rates due to release of adsorbed proteins by reductive dissolution of Fe- and Mn-oxyhydroxides in calcareous soils and (II) decreasing gross depolymerization rates due to mobilization of coagulating and toxic Al3+compounds in silicate soils.

  • Growth explains microbial carbon use efficiency across soils differing in land use and geology

    Zheng Q, Hu Y, zhang S, Noll L, Boeckle T, Richter A, Wanek W
    2019 - Soil Biology and Biochemistry, 128: 45-55

    Abstract: 

    The ratio of carbon (C) that is invested into microbial growth to organic C taken up is known as microbial carbon use efficiency (CUE), which is influenced by environmental factors such as soil temperature and soil moisture. How microbes will physiologically react to short-term environmental changes is not well understood, primarily due to methodological restrictions. Here we report on two independent laboratory experiments to explore short-term temperature and soil moisture effects on soil microbial physiology(i.e. respiration, growth, CUE, and microbial biomass turnover): (i) a temperature experiment with 1-day pre-incubation at 5, 15 and 25 °C at 60% water holding capacity (WHC), and (ii) a soil moisture/oxygen (O2) experiment with 7-day pre-incubation at 20 °C at 30%, 60% WHC (both at 21% O2) and 90% WHC at 1% O2. Experiments were conducted with soils from arable, pasture and forest sites derived from both silicate and limestone bedrocks. We found that microbial CUE responded heterogeneously though overall positively to short-term temperature changes, and decreased significantly under high moisture level (90% WHC)/suboxic conditions due to strong decreases in microbial growth. Microbial biomass turnover time decreased dramatically with increasing temperature, and increased significantly at high moisture level (90% WHC)/suboxic conditions. Our findings reveal that the responses of microbial CUE and microbial biomass turnover to short-term temperature and moisture/O2 changes depended mainly on microbial growth responses and less on respiration responses to the environmental cues, which were consistent across soils differing in land use and geology.

  • Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity

    Zheng Q, Hu Y, zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichhorst SA, Woebken D, Richter A, Wanek W
    2019 - Soil Biology and Biochemistry, 136: Article 107521

    Abstract: 

    Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.

  • Beta diversity and oligarchic dominance in the tropical forests of Southern Costa Rica

    Morera-Beita A, Sánchez D, Wanek W, Hofhansl F, Huber W, Chacón-Madrigal E, Montero-Munoz JL, Silla F
    2019 - Biotropica, 51: 117-128

    Abstract: 

    Recent studies have reported a consistent pattern of strong dominance of a small subset of tree species in neotropical forests. These species have been called “hyperdominant” at large geographical scales and “oligarchs” at regional‐landscape scales when being abundant and frequent. Forest community assembly is shaped by environmental factors and stochastic processes, but so far the contribution of oligarchic species to the variation of community composition (i.e., beta diversity) remains poorly known. To that end, we established 20.1‐ha plots, that is, five sites with four forest types (ridge, slope and ravine primary forest, and secondary forest) per site, in humid lowland tropical forests of southwestern Costa Rica to (a) investigate how community composition responds to differences in topography, successional stage, and distance among plots for different groups of species (all, oligarch, common and rare/very rare species) and (b) identify oligarch species characterizing changes in community composition among forest types. From a total of 485 species of trees, lianas and palms recorded in this study only 27 species (i.e., 6%) were nominated as oligarch species. Oligarch species accounted for 37% of all recorded individuals and were present in at least half of the plots. Plant community composition significantly differed among forest types, thus contributing to beta diversity at the landscape scale. Oligarch species was the component best explained by geographical and topographic variables, allowing a confident characterization of the beta diversity among tropical lowland forest stands.

  • Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: Gross protein depolymerization and microbial amino acid uptake

    Noll L, zhang S, Wanek W
    2019 - Soil Biology and Biochemistry, 130: 73-81

    Abstract: 

    Proteins comprise the largest soil N reservoir but cannot be taken up directly by microorganisms and plants due to size constraints and stabilization of proteins in organo-mineral associations. Therefore the cleavage of this high molecular weight organic N to smaller soluble compounds as amino acids is a key step in the terrestrial N cycle. In the last years two isotope pool dilution approaches have been successfully established to measure gross rates of protein depolymerization and microbial amino acid uptake in soils. However, both require laborious sample preparation and analyses, which limits sample throughput. Therefore, we here present a novel isotope pool dilution approach based on the addition of 15N-labeled amino acids to soils and subsequent concentration and 15N analysis by the oxidation of α-amino groups to NO2 and further reduction to N2O, followed by purge-and-trap isotope ratio mass spectrometry (PT-IRMS). We applied this method in mesocosm experiments with forest and meadow soils as well as with a cropland soil amended with either organic C (cellulose) or organic N (bovine serum albumin). To measure direct organic N mineralization to NH4+, the latter was captured in acid traps and analyzed by an elemental analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS). Our results demonstrate that the proposed method provides fast and precise measurements of at%15N even at low amino acid concentrations, allows high sample throughput and enables parallel estimations of instantaneous organic N mineralization rates.

  • A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle

    Wanek W, Zezula D, Wasner D, Mooshammer M, Prommer J
    2019 - Biogeosciences, 16: 3047-3068

    Abstract: 

    Efforts to understand and model the current and future behavior of the global phosphorus (P) cycle are limited by the availability of global data on rates of soil P processes, as well as their environmental controls. Here, we present a novel isotope pool dilution approach using 33Plabeling of live and sterile soils, which allows for high-quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake to be obtained. At the same time, net immobilization of 33Pi by soil microbes and abiotic sorption can be easily derived and partitioned. Compared with other approaches, we used short incubation times (up to 48 h), avoiding tracer remineralization, which was confirmed by the separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P-impoverished soils, as the sensitivity is increased by the extraction of exchangeable bioavailable Pi(Olsen Pi; 0.5 M NaHCO3) followed by Pi measurement using the malachite green assay. Biotic processes were corrected for desorption/sorption processes using adequate sterile abiotic controls that exhibited negligible microbial and extracellular phosphatase activities. Gross rates were calculated using analytical solutions of tracer kinetics, which also allowed for the study of gross soil P dynamics under non-steady-state conditions. Finally, we present major environmental controls of gross P-cycle processes that were measured for three P-poor tropical forest and three P-rich temperate grassland soils.

  • The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Schepaschenko D, et al, Wanek W, Zo-Bi IC
    2019 - Scientific Data, 6: Article 198

    Abstract: 

    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.

  • Vertical Redistribution of Soil Organic Carbon Pools After Twenty Years of Nitrogen Addition in Two Temperate Coniferous Forests

    Forstner, SJ, Wechselberger V, Müller S, Keiblinger KM, Díaz-Pinés E, Wanek W, Scheppi P, Hagedorn F, Gundersen P, Tatzber M, Gerzabek MH, Zechmeister-Boltenstern S
    2019 - Ecosystems, 22: 379-400

    Abstract: 

    Nitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO2 emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha−1 y−1 for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark. At the Swiss site, the addition of 22 kg N ha−1 y−1 (or 1.3 times throughfall deposition) stimulated tree growth, but decreased soil pH and exchangeable calcium. At the Danish site, the addition of 35 kg N ha−1 y−1 (1.5 times throughfall deposition) impaired tree growth, increased fine root biomass and led to an accumulation of N in several belowground pools. At both sites, elevated N inputs increased SOC pools in the moderately decomposed organic horizons, but decreased them in the mineral topsoil. Hence, long-term N addition led to a vertical redistribution of SOC pools, whereas overall SOC storage within 30 cm depth was unaffected. Our results imply that an N-induced shift of SOC from older, mineral-associated pools to younger, unprotected pools might foster the vulnerability of SOC in temperate coniferous forest soils.

  • Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli

    2019 - Frontiers in Plant Science, 10: Article 157

    Abstract: 

    Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates include primary metabolites (sugars, amino acids and organic acids) believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (i) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (ii) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translate that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of, and the effects that, environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning and how to improve the sustainability of agricultural production.

  • Preservation effects on isotopic signatures in benthic foraminiferal biomass

    Enge AJ, Wanek W, Heinz P
    2018 - Marine Micropaleontology, 144: 50-59

    Abstract: 

    Foraminiferal samples for stable isotope analysis are frequently preserved after field collection or during cruises despite the lack of knowledge if and how preservation changes the elemental and stable isotope composition of the protists. Thus, the aim of this study was to investigate the effects of preservation on natural and stable isotope-enriched foraminifera. We tested the following preservation methods on specimens of the benthic foraminifer Ammonia sp. (without surrounding sediment): drying at room temperature, freezing (−25 °C in seawater), ethanol with and without Rose Bengal (RB), and formalin with and without RB. Natural specimens were preserved for 14, 90, and 240 days, while stable isotope-enriched specimens were preserved for 30 days following a pulse-chase feeding experiment. Regardless of type and length, preservation caused a significant loss of carbon (biomass) of up to 42% and lower nitrogen contents in most treatments. Already preservation for 14 days significantly affected δ13C and δ15N signatures, with the strongest shifts caused by freezing at −25 °C in seawater and formalin fixation (with RB). With longer preservation time, the gap between foraminiferal δ13C signatures and the control signal increased for all preservation methods except for 96% ethanol. The observed shifts in the δ13C signatures in the differently preserved foraminifera are in a range of shifts that are found in the signatures of natural foraminifera and are caused by the uptake of various food sources. Applying different preservation methods therefore can bias trophic interpretations based on natural isotope abundances. Preservation of stable isotope-enriched foraminifera in ethanol (with and without RB) resulted in significantly lower carbon uptake estimates, while freezing caused significantly lower nitrogen uptake estimates. Our findings suggest that, if possible, any storage or preservation should be avoided, especially in formalin or at −25 °C with seawater; otherwise storage should be kept as short as possible. Of all tested methods, drying foraminifera at room temperature was the least affecting method with comparatively low variation among replicates. Comparison of biomass, isotope signatures and uptake estimates obtained from differently preserved specimens should be considered carefully, as differences might not be caused naturally, but by alterations of the cytoplasm during preservation.

  • pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans

    Oburger E, Cid CV, Preiner J, Hu J, Hann S, Wanek W, Richter A
    2018 - Environmental Science & Technology, 52: 6146-6156

    Abstract: 

    Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its “twin element”, Mo; however, our knowledge of the behavior of W in the plant−soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean (Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5−5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg−1 ). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg−1 ), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg−1 ), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant−soil environment, something that has been completely neglected in the past.

  • Traits indicating a conservative resource strategy are weakly related to narrow range size in a group of neotropical trees

    Chacón-Madrigal E, Wanek W, Hietz P, Dullinger S
    2018 - Perspectives in Plant Ecology Evolution and Systematics, 32: 30-37

    Abstract: 

    Biological traits may co-determine differences in geographical range sizes among closely related species. In plants, trait values linked to a conservative resource-use strategy have been hypothesised to be associated with small range sizes. However, the empirical support is mixed and limited to extra-tropical species so far. Here, we analyse the relationship between range size and eight functional traits linked to the plant economics spectrum in congeneric pairs of neotropical tree species of Costa Rica with contrasting range sizes. In the lowland tropical rainforests of southern Costa Rica, we sampled 345 trees from 35 species in 14 genera and measured leaf thickness, leaf dry matter content, specific leaf area, wood specific gravity (WSG), leaf nitrogen (N), leaf phosphorus, leaf potassium and leaf N:P ratio. For each species, we estimated range size as the extent of occurrence using known localities of occurrence. We correlated range sizes with trait data scaled within-genus and with the principal components of the multivariate trait space. WSG was higher and leaf N was lower in species with small range sizes in univariate regression models, although these traits were only weakly related to range size. None of the other six traits was correlated with range size. Results were similar for a model using the principal components of the multivariate trait space, which explained 36% of the variation in species’ extent of occurrence. Again, the traits most strongly associated with the selected components were WSG and leaf N. Although high WSG and low leaf N can be interpreted as indicators of conservative resource-use, we could not detect strong relationships between the respective trait syndrome and range size in our sample of species. Traits related to conservative resource use may hence be involved in determining the range size of the species analysed, but other factors are apparently more important.

  • Full 15N tracer accounting to revisit major assumptions of 15N isotope pool dilution approaches for gross nitrogen mineralization

    Braun J, Mooshammer M, Wanek W, Prommer J, Walker TWN, Rütting T, Richter A
    2018 - Soil Biology and Biochemistry, 117: 16-26
  • Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect

    Takriti M, Wild B, Schnecker J, Mooshammera M, Knoltsch A, Lashchinskiy N, Alves RJE, Gentsch N, Gittel A, Mikutta R, Wanek W, Richter A
    2018 - Soil Biology and Biochemistry, 121: 212-220

    Abstract: 

    A substantial portion of soil organic matter (SOM) is of microbial origin. The efficiency with which soil microorganisms can convert their substrate carbon (C) into biomass, compared to how much is lost as respiration, thus co-determines the carbon storage potential of soils. Despite increasing insight into soil microbial C cycling, empirical measurements of microbial C processing across biomes and across soil horizons remain sparse. The theory of ecological stoichiometry predicts that microbial carbon use efficiency (CUE), i.e. growth over uptake of organic C, strongly depends on the relative availability of C and nutrients, particularly N, as microorganisms will either respire excess C or conserve C while mineralising excess nutrients. Microbial CUE is thus expected to increase from high to low latitudes and from topsoil to subsoil as the soil C:N and the stoichiometric imbalance between SOM and the microbial biomass decrease. To test these hypotheses, we collected soil samples from the organic topsoil, mineral topsoil, and mineral subsoil of seven sites along a 1500-km latitudinal transect in Western Siberia. As a proxy for CUE, we measured the microbial substrate use efficiency (SUE) of added substrates by incubating soil samples with a mixture of 13C labelled sugars, amino sugarsamino acids, and organic acids and tracing 13C into microbial biomass and released CO2. In addition to soil and microbial C:N stoichiometry, we also determined the potential extracellular enzyme activities of cellobiohydrolase (CBH) and phenoloxidase (POX) and used the CBH:POX ratio as an indicator of SOM substrate quality. We found an overall decrease of SUE with latitude, corresponding to a decrease in mean annual temperature, in mineral soil horizons. SUE decreased with decreasing stoichiometric imbalance in the organic and mineral topsoil, while a relationship of SUE with soil C:N was only found in the mineral topsoil. However, contrary to our hypothesis, SUE did not increase with soil depth and mineral subsoils displayed lower average SUE than mineral topsoils. Both within individual horizons and across all horizons SUE was strongly correlated with CBH:POX ratio as well as with climate variables. Since enzyme activities likely reflect the chemical properties of SOM, our results indicate that SOM quality exerts a stronger control on SUE than SOM stoichiometry, particularly in subsoils were SOM has been turned over repeatedly and there is little variation in SOM elemental ratios.

  • Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils

    Hu Y, Zheng Q, zhang S, Noll L, Wanek W
    2018 - Soil Biology and Biochemistry, 123: 115-125

    Abstract: 

    Amino sugars and d-amino acid enantiomers are major components of bacterial and fungal cell walls (i.e. peptidoglycan and chitin) and are often used as biomarkers of microbial residue turnover in soils. However, little is known about the in situ decomposition rates of microbial cell wall residues and how soil physicochemical propertiesaffect this process. In this study, we investigated the in situ gross production and consumption rates of free amino sugars (glucosamine and muramic acid) and amino acids (meso-diaminopimelic acid, l-alanine, and d-alanine) by a novel isotope pool dilution assay using 15N-labeled amino compounds. Soils were obtained from six sites differing in land management (cropland, pasture, and forest) and bedrock (silicate and limestone) and incubated at three temperatures (5, 15, and 25 °C). Free glucosamine released during the decomposition of peptidoglycan and chitin contributed significantly to the extractable soil organic nitrogen pool. Gross production and consumption rates of glucosamine were higher than those of individual amino acids, i.e. L- and d-alanine. Muramic acid had a longer mean residence time (68 h compared to 2.7 h for glucosamine, L- and d-alanine) and made a negligible contribution to soil organic nitrogen fluxes, indicating that free muramic acid was not a major decomposition product of peptidoglycan in soils. Meso-diaminopimelic acid and d-alanine exhibited comparable gross production and consumption rates with l-alanine. These amino acids can be used as indicators to estimate the decomposition of peptidoglycan from bacterial cell wall residues. We found that chitin decomposition was greater in silicate soils, while peptidoglycan decomposition dominated in limestone soils. Glucosamine production rates were not correlated with soil total amino sugars, microbial community structure, or hydrolytic enzyme activities, but were highest in soils with low pH and high sand content, indicating that soil texture and soil pH may strongly influence the decomposition of amino sugar polymers. In contrast, mDAP, L- and d-alanine gross production and consumption rates were positively correlated with soil pH and clay content, due to greater depolymerization of peptidoglycan stem peptides in limestone soils. This isotope pool dilution approach strongly improves our understanding of the mechanisms and environmental controls on microbial cell wall decomposition in soils.

  • Age alters uptake pattern of organic and inorganic nitrogen by rubber trees

    Liu M, Xu F, Xu X, Wanek W, Yang X
    2018 - Tree Physiology, 38: 1685-1693

    Abstract: 

    Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3 leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15Nlabeled NH4 +, NO3 or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4 + > glycine > NO3 . As age increased, NH4 + uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4 + concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3 uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4 + uptake. Young rubber trees (7 and 16 years) had higher NH4 + and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3 preference. The results from this study demonstrate that rubber trees do not change their preference for NH4 + but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.

  • Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer Ammonia tepida

    Wukovits J, Bukenberger P, Enge AJ, Gerg M, Wanek W, Watzka M, Heinz P
    2018 - Biology Open, 4: 10

    Abstract: 

    Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125-250 mu m, 250-355 mu m, >355 mu m) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125-250 mu m size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities.

  • A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system

    Valiente N, Carrey R, Otero N, Soler A, Sanz D, Muñoz-Martín A, Jirsa F, Wanek W, Gómez-Alday JJ
    2018 - Science of The Total Environment, 631: 649-659

    Abstract: 

    Endorheic or closed drainage basins in arid and semi-arid regions are vulnerable to pollution. Nonetheless, in the freshwater-saltwater interface of endorheic saline lakes, oxidation-reduction (redox) reactions can attenuate pollutants such as nitrate (NO3-). This study traces the ways of nitrogen (N) removal in the Pétrola lake-aquifer system (central Spain), an endorheic basin contaminated with NO3- (up to 99.2mg/L in groundwater). This basin was declared vulnerable to NO3- pollution in 1998 due to the high anthropogenic pressures (mainly agriculture and wastewaters). Hydrochemical, multi-isotopic (δ18ONO3, δ15NNO3, δ13CDIC, δ18OH2O, and δ2HH2O) and geophysical techniques (electrical resistivity tomography) were applied to identify the main redox processes at the freshwater-saltwater interface. The results showed that the geometry of this interface is influenced by land use, causing spatial variability of nitrogen biogeochemical processes over the basin. In the underlying aquifer, NO3- showed an average concentration of 38.5mg/L (n=73) and was mainly derived from agricultural inputs. Natural attenuation of NO3- was observed in dryland farming areas (up to 72%) and in irrigation areas (up to 66%). In the Pétrola Lake, mineralization and organic matter degradation in lake sediment play an important role in NO3- reduction. Our findings are a major step forward in understanding freshwater-saltwater interfaces as reactive zones for NO3- attenuation. We further emphasize the importance of including a land use perspective when studying water quality-environmental relationships in hydrogeological systems dominated by density-driven circulation.

  • Is local trait variation related to total range size of tropical trees?

    Chacón-Madrigal E, Wanek W, Hietz P, Dullinger S
    2018 - PLoS One, 3: 19

    Abstract: 

    The reasons why the range size of closely related species often varies significantly have intrigued scientists for many years. Among other hypotheses, species with high trait variation were suggested to occupy more diverse environments, have more continuity in their distributions, and consequently have larger range sizes. Here, using 34 tree species of lowlands tropical rainforest in southern Costa Rica, we explored whether inherent trait variability expressed at the local scale in functional traits is related to the species’ total geographical range size. We formed 17 congeneric pairs of one narrow endemic and one widespread species, sampled 335 individuals and measured eight functional traits: leaf area, leaf thickness, leaf dry matter content, specific leaf area, leaf nitrogen content, leaf phosphorus content, leaf nitrogen to phosphorus ratio, and wood specific gravity. We tested whether there are significant differences in the locally expressed variation of individual traits or in multidimensional trait variance between the species in congeneric pairs and whether species’ range size could hence be predicted from local trait variability. However, we could not find such differences between widely distributed and narrow range species. We discuss the possible reasons for these findings including the fact that higher trait variability of widespread species may result from successive local adaptations during range expansion and may hence often be an effect rather than the cause of larger ranges.

  • Application of stable-isotope labelling techniques for the detection of active diazotrophs

    Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D
    2018 - Environ Microbiol, 20: 44-61

    Abstract: 

    nvestigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15 N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15 N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15 N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15 N-RNA-SIP approach optimized for environmental samples and benchmarked to 15 N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15 N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.

  • Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform

    Hu Y, Zheng Q, Wanek W
    2017 - analytical chemistry, 17: 9192-9200

    Abstract: 

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.

  • Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister­‐Boltenstern S, Richter A
    2017 - Science Advances, 3: 13

    Abstract: 

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the
    stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and
    resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition
    in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances
    led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the
    fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which
    was not accompanied by significant changes in community composition. The functional and structural responses to
    the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and
    costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme
    activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was
    dependent on the nutrient content of the resource through its effect on microbial physiology and community
    composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses
    that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of
    microbial C-N-P interactions into climate extremes research.

  • Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests

    Liu M, Li C, Xu X, Wanek W, Jiang N, Wang H, Yang X
    2017 - Tree Physiology, 11: 1515-1526

    Abstract: 

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3− (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g−1 dry weight (d.w.) root h−1, while those by tropical trees averaged 6.8 μg N g−1 d.w. root h−1. Glycine uptake rates averaged 3.1 μg N g−1 d.w. root h−1 for temperate trees and 2.4 μg N g−1 d.w. root h−1 for tropical trees. NO3− uptake was the lowest (averaging 0.8 μg N g−1 d.w. root h−1 for temperate trees and 1.2 μg N g−1 d.w. root h−1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3− uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3− or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes.

  • Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    Wukovits J, Enge AJ, Wanek W, Watzka M, Heinz P
    2017 - Biogeosciences, 14: 2815-2829

    Abstract: 

    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with C-13 and N-15 labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 degrees C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are likely to impact nutrient fluxes in A. tepida/H. germanica associations.

  • Stable isotope signatures reflect dietary diversity in European forest moths

    Adams MO, Seifert CL, Lehner L, Truxa C, Wanek W, Fiedler K
    2016 - Frontiers in Zoology, 13: 1-10

    Abstract: 

    Background: Information on larval diet of many holometabolous insects remains incomplete. Carbon (C) and nitrogen (N) stable isotope analysis in adult wing tissue can provide an efficient tool to infer such trophic relationships. The present study examines whether moth feeding guild affiliations taken from literature are reflected in isotopic signatures. Results: Non-metric multidimensional scaling and permutational analysis of variance indicate that centroids of dietary groups differ significantly. In particular, species whose larvae feed on mosses or aquatic plants deviated from those that consumed vascular land plants. Moth δ15N signatures spanned a broader range, and were less dependent on species identity than δ13C values. Comparison between moth samples and ostensible food sources revealed heterogeneity in the lichenivorous guild, indicating only Lithosia quadra as an obligate lichen feeder. Among root-feeding Agrotis segetum, some specimens appear to have developed on crop plants in forest-adjacent farm land. Reed-feeding stem-borers may partially rely on intermediary trophic levels such as fungal or bacterial growth. Conclusion: Diagnostic partitioning of moth dietary guilds based on isotopic signatures alone could not be achieved, but hypotheses on trophic relationships based on often vague literature records could be assessed with high resolution. Hence, the approach is well suited for basic categorization of moths where diet is unknown or notoriously difficult to observe (i.e. Microlepidoptera, lichen-feeders). Keywords: δ13C, δ15N, Larval diet, Trophic position Abbreviations: C, Chemical symbol for carbon; IAEA-CH-6, Reference standard for 13C/12C ratios derived from sucrose and provided by the international atomic energy agency (IAEA); IAEA-CH-7, Reference standard for 13C/12C ratios derived from polyethylene and provided by the international atomic energy agency (IAEA); IAEA-N-1, Reference standard for 15N/ 14N ratios derived from ammonium sulfate and provided by the international atomic energy agency (IAEA); IAEA-N- 2, Reference standard for 15N/14N ratios derived from ammonium sulfate and provided by the international atomic energy agency (IAEA); IAEA-NO-3, Reference standard for 15N/14N ratios derived from potassium nitrate and provided by the international atomic energy agency (IAEA); MMDS, Metric multi-dimensional scaling; N, Chemical symbol for nitrogen; NMDS, Non-metric multi-dimensional scaling; SD, Standard deviation; TLE, Trophic level enrichment; δ 13C, Shift in the 13C/12C ratio of the sample relative to the reference standard (i.e. Pee Dee Belemnite); δ 15N, Shift in the 15N/14N ratio of the sample relative to the reference standard (i.e. atmospheric nitrogen)

  • Moss δ13C: Implications for subantarctic palaeohydrological reconstructions

    Bramley-Alves J, Wanek W, Robinson SA
    2016 - Palaeogeography, 453: 20-29

    Abstract: 

    Southern Ocean Islands, despite their equitable oceanic climates, have recently experienced a number of pronounced climate variations. Shifts in water availability in this region are of concern; however, methods of measuring water availability are currently inadequate. Recent advances using stable carbon isotopes (δ13C) in Antarctic mosses to record long-term variations in water availability suggest that this technique might be applicable in other locations where conditions are cold enough to produce meaningful moss growth for reconstructions. Verification of this technique at each new location is essential, however, due to disparity between species and climates. Here, variations in δ13CBULK with growth water availability were measured in three moss species on subantarctic Macquarie Island. We found these subantarctic mosses showed no difference in δ13CBULK signatures between growth water environments and displayed more negative δ13CBULK ranges than those from East Antarctica, suggesting that climatic differences override the microclimate signal. Despite significant differences in leaf cell morphology there was no variation in δ13CBULK between these subantarctic species. It may be that these species are unsuitable as biological proxies due to their growth form being less dense than the turf forming Antarctic species. This underlines the need to carryout preliminary research into moss carbon isotope fractionation for each new region, and for each species, where palaeohydrological reconstructions are planned – a step that is often not given appropriate consideration in palaeo-research.

  • Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems

    Hunter WR, Niederdorfer R, Gernand A, Veuger B, Prommer J, Mooshammer M, Wanek W, Battin TJ
    2016 - Geophysical Research Letters, 43: 1582-1588

    Abstract: 

    In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organomineral sorption affects aquatic microbial metabolism, using organomineral particles containing a mix of 13C, 15N-labeled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralization. Organomineral complexation restricted C and N retention within biofilms and aggregates and also their mineralization. This reduced the efficiency with which biofilms mineralize C and N by 30% and 6%. By contrast, organominerals reduced the C and N mineralization efficiency of suspended aggregates by 41% and 93%. Our findings show how organomineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.

  • Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland

    Spohn M, Pötsch EM, Eichhorst SA, Woebken D, Wanek W, Richter A
    2016 - Soil Biology and Biochemistry, 97: 168-175

    Abstract: 

    Soil microbial carbon use efficiency (CUE), defined as the ratio of organic C allocated to growth over organic C taken up, strongly affects soil carbon (C) cycling. Despite the importance of the microbial CUE for the terrestrial C cycle, very little is known about how it is affected by nutrient availability. Therefore, we studied microbial CUE and microbial biomass turnover time in soils of a long-term fertilization experiment in a temperate grassland comprising five treatments (control, PK, NK, NP, NPK). Microbial CUE and the turnover of microbial biomass were determined using a novel substrate-independent method based on incorporation of 18O from labeled water into microbial DNA. Microbial respiration was 28–37% smaller in all three N treatments (NK, NP, and NPK) compared to the control, whereas the PK treatment did not affect microbial respiration. N-fertilization decreased microbial C uptake, while the microbial growth rate was not affected. Microbial CUE ranged between 0.31 and 0.45, and was 1.3- to 1.4-fold higher in the N-fertilized soils than in the control. The turnover time ranged between 80 and 113 days and was not significantly affected by fertilization. Net primary production (NPP) and the abundance of legumes differed strongly across the treatments, and the fungal:bacterial ratio was very low in all treatments. Structural equation modeling revealed that microbial CUE was exclusively controlled by N fertilization and that neither the abundance of legumes (as a proxy for the quality of the organic matter inputs) nor NPP (as a proxy for C inputs) had an effect on microbial CUE. Our results show that N fertilization did not only decrease microbial respiration, but also microbial C uptake, indicating that less C was intracellularly processed in the N fertilized soils. The reason for reduced C uptake and increased CUE in the N-fertilization treatments is likely an inhibition of oxidative enzymes involved in the degradation of aromatic compounds by N in combination with a reduced energy requirement for microbial N acquisition in the fertilized soils. In conclusion, the study shows that N availability can control soil C cycling by affecting microbial CUE, while plant community-mediated changes in organic matter inputs and P and K availability played no important role for C partitioning of the microbial community in this temperate grassland.

  • Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals

    Petter G, Wagner K, Wanek W, Delago EJS, Zotz G, Cabral JS, Kreft H
    2016 - Functional Ecology, 30: 188-198

    Abstract: 

    Summary

    1. Analysing functional traits along environmental gradients can improve our understanding of the mechanisms structuring plant communities. Within forests, vertical gradients in light intensity, temperature and humidity are often pronounced. Vascular epiphytes are particularly suitable for studying the influence of these vertical gradients on functional traits because they lack contact with the soil and thus individual plants are entirely exposed to different environmental conditions, from the dark and humid understorey to the sunny and dry outer canopy.
    2. In this study, we analysed multiple aspects of the trait-based ecology of vascular epiphytes: shifts in trait values with height above ground (as a proxy for vertical environmental gradients) at community and species level, the importance of intra- vs. interspecific trait variability, and trait differences among taxonomic groups. We assessed ten leaf traits for 1151 individuals belonging to 83 epiphyte species of all major taxonomic groups co-occurring in a Panamanian lowland forest.
    3. Community mean trait values of many leaf traits were strongly correlated with height and particularly specific leaf area and chlorophyll concentration showed nonlinear, negative trends.
    4. Intraspecific trait variability was pronounced and accounted for one-third of total observed trait variance. Intraspecific trait adjustments along the vertical gradient were common and seventy per cent of all species showed significant trait–height relationships. In addition, intraspecific trait variability was positively correlated with the vertical range occupied by species.
    5. We observed significant trait differences between major taxonomic groups (orchids, ferns, aroids, bromeliads). In ferns, for instance, leaf dry matter content was almost twofold higher than in the other taxonomic groups. This indicates that some leaf traits are taxonomically conserved.
    6. Our study demonstrates that vertical environmental gradients strongly influence functional traits of vascular epiphytes. In order to understand community composition along such gradients, it is central to study several aspects of trait-based ecology, including both community and intraspecific trends of multiple traits.
  • Microbial carbon use efficiency and biomass turnover times depending on soil depth - Implications for carbon cycling.

    Spohn M, Klaus K, Wanek W, Richter A
    2016 - Soil Biology and Biochemistry, 96: 74-81

    Abstract: 

    Processing of organic carbon (C) by soil microorganisms is a key process of terrestrial C cycling. For this reason we studied (i) microbial carbon use efficiency (CUE) defined as C allocated to growth over organic C taken up by the microbial community, and (ii) the turnover time of microbial biomass in a pasture and in two forest soils. We hypothesized that microbial CUE decreases in mineral soils with depth from the topsoil to the subsoil, while the turnover time of the microbial biomass increases due to energetic constrains. We determined microbial CUE and turnover of microbial biomass C using a novel substrate-independent method based on incorporation of 18O from labeled water into microbial DNA with concurrent measurements of basal respiration. Microorganisms showed decreasing C uptake rates with decreasing C contents in the deeper soil layers. In the forest soils, no adaptation of microbial CUE with soil depth took place, i.e., microbes in the forest topsoil used C at the same efficiency as microbes in the subsoil. However, in the pasture soil, microbial CUE decreased in the lower soil layers compared to the topsoil, indicating that microorganisms in the deeper soil layers allocated relatively more C to respiration. In the organic soil layer, microorganisms respired more per unit microbial biomass C than in the subsoil, but had a similar CUE despite the high C-to-nitrogen and C-to-phosphorus ratios of the litter layers. The turnover time of microbial biomass increased with soil depth in the two forest soils. Thus, in the forest soils, a lower microbial C uptake rate in the deeper soil layers was partially compensated by a longer turnover time of microbial biomass C. In conclusion, our findings emphasize that in addition to microbial CUE, the turnover time of the microbial biomass strongly affects soil C cycling.

    Keywords

    • Soil microbial carbon use efficiency
    • Growth efficiency
    • Organic matter decomposition;
    • Microbial metabolism
    • Stoichiometry
    • Microbial biomass carbon turnover
  • Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming

    Schnecker J, Borken W, Schindlbacher A, Wanek W
    2016 - Soil Biology and Biochemistry, 103: 300-307

    Abstract: 

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition.

    To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ13C, Δ14C, δ15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ13C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

     
  • Microbial decomposition of 13C- labeled phytosiderophores in the rhizosphere of wheat: Mineralization dynamics and key microbial groups involved

    Oburger E, Gruber B, Wanek W, Watzinger A, Stanetty C, Schindlegger Y, Hann S., Schenkeveld WDC, Kraemer SM, Puschenteiter M
    2016 - Soil Biology and Biochemistry, 98: 196-207

    Abstract: 

    Being low molecular weight carbon (LMW-C) compounds, phytosiderophores (PS) released by strategy II plants are highly susceptible to microbial decomposition. However, to date very little is known about the fate of PS in soil. Using in-house synthesized 13C4-2′-deoxymugineic acid (DMA), the main PS released by wheat, we investigated DMA mineralization dynamics, including microbial incorporation into phospholipid fatty acids (PLFA), in the wheat rhizosphere and bulk soil of two alkaline and one acidic soil. Half-lives of the intact DMA molecule (3–8 h) as well as of DMA-derived C-compounds (8–38 days) were in the same order of magnitude as those published for other LMW-C compounds like sugars, amino acids and organic acids. Combining mineralization with PLFA data showed that between 40 and 65% of the added DMA was either respired or incorporated into soil microbial biomass after 24 h, with the largest part of total incorporated DMA-13C being recovered in gram negative bacteria. Considering root growth dynamics and that PS are mainly exuded from root tips, the significantly slower mineralization of DMA in bulk soil is of high ecological importance to enhance the Fe scavenging efficiency of PS released into the soil.

  • Carbon and Nitrogen Uptake of Calcareous Benthic Foraminifera along a Depth-Related Oxygen Gradient in the OMZ of the Arabian Sea

    Enge AJ, Wukovits J, Wanek W, Watzka M, Witte UFM, Hunter WR, Heinz P
    2016 - Frontiers in microbiology, 7: 71

    Abstract: 

    Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N) by calcareous foraminifera in the 0–1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phytodetrital carbon within 4 days by all investigated species shows that phytodetritus is a relevant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between species. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion, or hosting of bacteria under almost anoxic conditions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availability) and in the presence of other benthic organisms are likely to account for observed changes in the processing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ boundary region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

  • Biological nitrogen fixation and biomass production stability in alfalfa (Medicago sativa L.) genotypes under organic management conditions

    Moghaddam A, Raza A, Vollmann, J, Ardakani MR, Wanek W, Gollner G, Friedel JK
    2015 - Biological Agriculture & Horticulture, 31: 177-192

    Abstract: 

    Assessments of the stability as well as the performance of plant genotypes across diverse environmental conditions is important for plant breeders as a tool for selecting superior cultivars for the target environments. Alfalfa is the best known fodder crop with a high ability for biological nitrogen fixation (BNF) and high drought tolerance, and it is well-known as an important component of organic farming systems especially in the dry, Pannonian region of east Austria. In a 2-year experiment (2007-2008), 18 alfalfa genotypes from different geographical origins were evaluated under irrigated and rainfed conditions in order to recognize high performance and stable genotypes based on biomass production and BNF in organically managed fields at the University of Natural Resources and Life Sciences, Vienna, Austria. The analysis of variance showed significant differences for the main factors namely year, location, genotype and their interactions in the studied traits. With regard to mean comparisons and stability analysis for shoot dry matter, total biomass yield and BNF, the cultivar Sitel was the best performing genotype followed by PlatoZS, Fix232, Vlasta and Gharghologh. Although additive main effects and multiplicative interaction analysis was found to be more informative in describing the adaptive response of the genotypes, the superiority measure P-i was the best stability parameter to select high yielding and stable genotypes, based on its simplicity of calculation and correlation with crop performance in this study.

  • The application of ecological stoichiometry to plant-microbial-soil organic matter transformations

    Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W
    2015 - Ecological Monographs, 85: 135-155

    Abstract: 

    Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales.

  • Contribution of carbonate weathering to the CO2 efflux from temperate forest soils

    Schindlbacher A, Borken W, Djukic I, Brandstätter C, Spötl C, Wanek W
    2015 - Biogeochemistry, 124: 273-290

    Abstract: 

    Temperate forests provide favorable conditions for carbonate bedrock weathering as the soil CO2 partial pressure is high and soil water is regularly available. As a result of weathering, abiotic CO2 can be released and contribute to the soil CO2 efflux. We used the distinct isotopic signature of the abiotic CO2 to estimate its contribution to the total soil CO2 efflux. Soil cores were sampled from forests on dolomite and limestone and were incubated under the exclusion of atmospheric CO2. Efflux and isotopic signatures of CO2 were repeatedly measured of cores containing the whole mineral soil and bedrock material (heterotrophic respiration + CO2 from weathering) and of cores containing only the mineral top-soil layer (A-horizon; heterotrophic respiration). An aliquot of the cores were let dry out during incubation to assess effects of soil moisture. Although the delta C-13 values of the CO2 efflux from the dolomite soil cores were within a narrow range (A-horizon -26.2 +/- A 0.1 aEuro degrees; whole soil profile wet -25.8 +/- A 0.1 aEuro degrees; whole soil profile dry -25.5 +/- A 0.1 aEuro degrees) the CO2 efflux from the separated A-horizons was significantly depleted in C-13 when compared to the whole soil profiles (p = 0.015). The abiotic contribution to the total CO2 efflux from the dolomite soil cores was 2.0 +/- A 0.5 % under wet and 3.4 +/- A 0.5 % under dry conditions. No abiotic CO2 efflux was traceable from the limestone soil cores. An overall low contribution of CO2 from weathering was affirmed by the amount and C-13 signature of the leached dissolved inorganic carbon (DIC) and the radiocarbon signature of the soil CO2 efflux in the field. Together, our data point towards no more than 1-2 % contribution of abiotic CO2 to the growing season soil CO2 efflux in the field.

  • Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica

    Taylor P, Asner G, Dahlin K, Anderson C, Knapp D, Martin R, Mascaro J, Chazdon R, Cole R, Wanek W, Hofhansl F, Vilchez-Alvaeado B, Townsend A
    2015 - PLoS One, 10: in press

    Abstract: 

    Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes.

  • Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations

    Schindlbacher A, Schnecker J, Takriti M, Borken W, Wanek W
    2015 - Global Change Biology, 21: 4265-4277

    Abstract: 

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2) s(-1) , control: 2.34 ± 0.29 μmol m(-2) s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  • Convergence of soil nitrogen isotopes across global climate gradients

    Craine JM, Elmore AJ, Wang L, Augusto L, Baisden WT, Brookshire EN, Cramer MD, Hasselquist NJ, Hobbie EA, Kahmen A; Koba K, Kranabetter JM, Mack MC, Marin-Spiotta E, Mayor JR, McLauchlan KK, Michelsen A, Nardoto GB, Oliveira RS, Perakis SS, Peri PL, Quesada CA, Richter A, Schipper LA, Stevenson BA, Turner BL, Viani RA, Wanek W, Zeller B
    2015 - Scientific Reports, 5: 8

    Abstract: 

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  • Moss δ(13) C: an accurate proxy for past water environments in polar regions

    Bramley-Alves J, Wanek W, French K, Robinson SA
    2015 - Global Change Biology, 21: 2454-2464

    Abstract: 

    Increased aridity is of global concern. Polar regions provide an opportunity to monitor changes in bioavailable water free of local anthropogenic influences. However, sophisticated proxy measures are needed. We explored the possibility of using stable carbon isotopes in segments of moss as a fine-scale proxy for past bioavailable water. Variation in δ(13) C with water availability was measured in three species across three peninsulas in the Windmill Islands, East Antarctica and verified using controlled chamber experiments. The δ(13) C from Antarctic mosses accurately recorded long-term variations in water availability in the field, regardless of location, but significant disparities in δ(13) C between species indicated some make more sensitive proxies. δ(13) CSUGAR derived from living tissues can change significantly within the span of an Antarctic season (5 weeks) in chambers, but under field conditions, slow growth means that this technique likely represents multiple seasons. δ(13) CCELLULOSE provides a precise and direct proxy for bioavailable water, allowing reconstructions for coastal Antarctica and potentially other cold regions over past centuries. © 2014 John Wiley & Sons Ltd.

  • Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    Heinzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G
    2015 - AoB Plants, 7: 16

    Abstract: 

    he processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. Published by Oxford University Press on behalf of the Annals of Botany Company.

  • New insights into mechanisms driving carbon allocation in tropical forests

    Hofhansl F, Schnecker J, Singer G, Wanek W
    2015 - New Phytologist, 205: 137-146

    Abstract: 

    The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  • Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    Hofhansl F, Kobler J, Ofner J, Drage S, Pölz EM, Wanek W
    2014 - Global Biogeochemical Cycles, 28: 1437-1454

    Abstract: 

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Nino-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Nino dry period, causing a decrease in ANPP. However, the subsequent La Nina wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3 degrees C increase in annual maximum temperatures during the El Nino period but subsequently recovered to above predrought levels during the La Nina period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  • Nutrient limitation of alpine plants: Implications from leaf N : P stoichiometry and leaf delta N-15

    Xu X, Wanek W, Zhou C, Richter A, Song M, Cao G, Ouyang H, Kuzyakov Y
    2014 - Journal of Plant Nutrition and Soil Science, 177: 178-387

    Abstract: 

    Nitrogen (N) deposition can affect grassland ecosystems by altering biomass production, plant species composition and abundance. Therefore, a better understanding of the response of dominant plant species to N input is a prerequisite for accurate prediction of future changes and interactions within plant communities. We evaluated the response of seven dominant plant species on the Tibetan Plateau to N input at two levels: individual species and plant functional group. This was achieved by assessing leaf N : P stoichiometry, leaf delta N-15 and biomass production for the plant functional groups. Seven dominant plant species-three legumes, two forbs, one grass, one sedge-were analyzed for N, P, and delta N-15 2 years after fertilization with one of the three N forms: NO3-, NH4+, or NH4NO3 at four application rates (0, 7.5, 30, and 150 kg N ha(-1) y(-1)). On the basis of biomass production and leaf N : P ratios, we concluded that grasses were limited by available N or co-limited by available P. Unlike for grasses, leaf N : P and biomass production were not suitable indicators of N limitation for legumes and forbs in alpine meadows. The poor performance of legumes under high N fertilization was mainly due to strong competition with grasses. The total above-ground biomass was not increased by N fertilization. However, species composition shifted to more productive grasses. A significant negative correlation between leaf N : P and leaf delta N-15 indicated that the two forbs Gentiana straminea and Saussurea superba switched from N deficiency to P limitation (e. g., N excess) due to N fertilization. These findings imply that alpine meadows will be more dominated by grasses under increased atmospheric N deposition.

  • Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Gerbl FW, Weidler GW, Wanek W, Erhardt A, Stan-Lotter H
    2014 - Frontiers in microbiology, 5: 17

    Abstract: 

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47 degrees C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40 degrees C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (NH4Cl)-N-15 or ((NH4)-N-15)(2)SO(4)as sole energy sources revealed incorporation of N-15 into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  • Assessing the effect of lucerne utilization systems in the Pannonian region of Austria

    Raza A, Bodner G, Moghaddan A, Ardakani MR, Loiskandl W, Himmelbauer M, Gollner G, Wanek W, Friedel JK
    2014 - Archives in Agronomy and Soil Science, 60: 297-311

    Abstract: 

    Conservation of water using mulches is a viable option under semiarid conditions for enhancing water use efficiency. Effect of mulches varies among years and with the amount and timing of mulching. Lucerne is a key crop for organic farming systems under semiarid conditions in Austria. Effect of mulching with lucerne has not been thoroughly investigated. Field experiments were conducted to assess the effect of lucerne utilization system (nonmulch versus mulch) on its shoot and root dry matter yield, biological nitrogen fixation and water use efficiency. Experiments were laid out in randomized complete block design with four replicates at the experimental farm of University of Natural Resources and Life Sciences, Vienna, Austria, during 2007-2008. Mulching was effective in lowering soil temperature by 1-6 degrees C in the top 5 cm of soil. Utilization systems did not significantly affect the other studied parameters (P < 0.05). Lucerne shoot and root dry matter yield, biological nitrogen fixation, and water use efficiency were greater in 2008 than in 2007. Effect of lucerne utilization systems on soil properties needs to be investigated over long-term studies to verify results of this 2-year study.

  • No evidence of aquatic priming effects in hyporheic zone microcosms

    Bengtson M, Wagner K, Burns NR, Herberg ER, Wanek W, Kaplan LA, Battin TJ
    2014 - Scientific Reports, 4: 6

    Abstract: 

    The priming effect refers to quantitative changes in microbial decomposition of recalcitrant organic matter upon addition of labile organic matter and is a phenomenon that mainly has been reported and debated in soil science. Recently, priming effects have been indicated in aquatic ecosystems and have received attention due to the potential significance for ecosystem carbon budgets. Headwater stream biofilms, which are important degraders of both allochthonous, presumably recalcitrant, organic matter and labile autochthonous organic matter, may be sites where priming effects are important in aquatic environments. We have experimentally tested for priming effects in stream biofilms within microcosms mimicking the stream hyporheic zone. A (13)C labeled model allochthonous carbon source was used in combination with different carbon sources simulating autochthonous inputs. We did not detect changes in respiration, removal or incorporation of allochthonous organic matter in response to autochthonous treatments, thus not supporting the occurrence of priming effects under the experimental conditions. This study is the first to address priming effects in the hyporheic zone, and one of very few studies quantitatively assessing aquatic priming effects. The results contrast with existing studies, which highlights the need for quantitative approaches to determine the importance of priming effects in aquatic environments.

  • Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling

    Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A
    2014 - Nature Communications, 5: 3694

    Abstract: 

    Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their NUE. We find that microbes retain most immobilized organic N (high NUE), when they are N limited, resulting in low N mineralization. However, when the metabolic control of microbial decomposers switches from N to C limitation, they release an increasing fraction of organic N as ammonium (low NUE). We conclude that the regulation of NUE is an essential strategy of microbial communities to cope with resource imbalances, independent of the regulation of microbial carbon use efficiency, with significant effects on terrestrial N cycling.

  • The relationship between N isotopic fractionation within soybean and N2 fixation during soybean development

    Schweiger P, Hofer M, Vollmann J, Wanek W
    2014 - Physiologia Plantarum, 152: 546-557

    Abstract: 

    The contribution of N(2) fixation to overall soybean N uptake has most commonly been quantified by N isotope-based methods, which rely on isotopic differences in plant N between legumes and non-fixing reference plants. The choice of non-fixing reference plants is critical for the accuracy of isotope-based methods, and mismatched reference plants remain a potential source of error. Accurate estimates of soybean N(2) fixation also require information on N isotopic fractionation within soybean. On the basis of a previous observation of a close correlation between an expression of N fractionation within soybean and the proportion of plant N derived from atmosphere (%Ndfa) determined by (15) N natural abundance, this field study aimed at assessing the relationship between various expressions describing intraplant (15) N or N partitioning and %Ndfa during soybean development. Starting from a late vegetative stage until beginning senescence, the N content and N isotopic composition of shoots, roots and nodules of nodulated and non-nodulated soybeans was determined at eight different developmental stages. Regression analysis showed that %Ndfa most closely correlated with the difference in the N isotopic composition of shoot N minus that of root including nodule N, and that this relationship was similar to that obtained in a previous multi-site field study. We therefore consider this expression to hold promise as a means of quantifying %Ndfa independent of a reference plant, which would avoid some of the external sources of error introduced by the use of reference plants in determining %Ndfa. © 2014 Scandinavian Plant Physiology Society.

  • Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A
    2014 - Frontiers in microbiology, 5: 1-10

    Abstract: 

    Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition toward their resource in a non-homeostatic behavior. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake), such that they release elements in excess depending on their demand (e.g., respiration and N mineralization). Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  • Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial

    Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC
    2014 - PLoS One, 9: in press

    Abstract: 

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  • Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea

    Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S, Richter A, Schleper C
    2014 - ISME Journal, 8: 1135-1146

    Abstract: 

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  • Carbon isotope discrimination and water use efficiency relationships of alfalfa genotypes under irrigated and rain-­‐fed organic farming

    Moghaddam A, Raza A, Vollmann J, Ardakani MR, Wanek W, Gollner G, Friedel JK
    2013 - European Journal of Agronomy, 50: 82-89

    Abstract: 

    Carbon isotope discrimination (Delta) has been proposed as a method for evaluating water use efficiency (WUE) in C-3 plants and as a precise technique for screening plants with higer tolerance under water deficit conditions. In this research, 18 alfalfa genotypes from different geographical origins were evaluated under irrigated and rain-fed conditions in organically managed fields in Austria. Significant differences were found amongst harvests for Delta-shoot under both conditions while genotype by harvest interaction was only significant under irrigated condition. Drought stress under rain-fed condition reduced the overall mean of water use efficiency and carbon isotope discrimination responses(up to 34%), but the ratios of reduction differed for characters and genotypes. Narrow ranges were found for all traits especially for WUE-TBY (total biomass yield) (0.78 kg m(-3)) and Delta-shoot (0.53 parts per thousand) based on genotype means over locations and years, although variation and ranges were higher under irrigated condition. Regarding the variable and low correlations, simultaneous assessment of genotypes for Delta-shoot and biomass production can ensure the selection of superior genotypes and minimize potential biomass reductions that may result from using Delta-shoot as the only selection criterion to improve WUE. Sitel was the most water use efficient genotype(2.79 and 4.48 kg m(-3) based on shoot dry matter and total biomass,respectively) across two condition (widely adapted genotype) followed by Mohajeran, Fix232 and Verko under irrigated condition (as specific adapted genotypes) and Vlasta, Sanditi, Ghara-aghaj under rain-fed condition. (c) 2013 Elsevier B.V. All rights reserved.

  • A novel N-15 tracer model reveals: Plant nitrate uptake governs nitrogen transformation rates in agricultural soils

    Inselsbacher E, Wanek W, Strauss J, Zechmeister­‐Boltenstern S, Müller C
    2013 - Soil Biology and Biochemistry, 57: 301-310

    Abstract: 

    One major challenge in agriculture is improving the nitrogen (N) use efficiency of crop plants and at the same time reducing the losses of fertilizer N to the environment. The use of N-15 tracer studies in combination with process-based models has been proven to be a powerful tool for increasing our understanding of the dynamic interactions between soil, microbes and plants. Here we present a novel approach that includes plant uptake of fertilizer NH4+ and NO3-. We developed, evaluated and applied an analytical model allowing the simultaneous estimation of 14 processes within the N cycle using results from a previously published N-15 tracer study (Inselsbacher, E., Hinko-Najera Umana, N., Stange, P.C., Gorfer, M., Schuller, E., Ripka, K., Zechmeister-Boltenstern, S., Flood-Novotny, R., Strauss, J., Wanek, W., 2010. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology & Biochemistry 42, 360-372]. The model revealed that plant NO3- uptake governed the overall N cycle during the 8-days greenhouse study. Nitrification was the main fate of NH4+ but its kinetics differed significantly between soils. The model-based calculations proved to be a major advancement compared to the commonly used calculations based on the pool dilution technique, due to the number of estimated parameters, their respective kinetic shifts over prolonged time periods and their explanatory power. In future N-15 tracer studies this analytical tool will allow accounting for the effect of plant N uptake on soil N transformations. (C) 2012 Elsevier Ltd. All rights reserved.

  • Oxygen isotopes in tree rings record variation in precipitation δ 18O and amount effects in the south of Mexico.

    Brienen RJW, Hietz P, Wanek W, Manuel G
    2013 - Journal of Geophysical Research – Biogeosciences, 118: 1604-1615

    Abstract: 

    Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings (δ 18Otr). Interannual variation in δ 18Otr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18Otr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18O-depleted rain in the region and seem to have affected the δ 18Otr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18Otr of M. acantholoba can be used as a proxy for source water δ 18O and that interannual variation in δ 18Oprec is caused by a regional amount effect. This contrasts with δ 18O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in disentangling the processes influencing precipitation δ 18O .

  • Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants

    Zaller JG, Wechselberger KF, Gorfer M, Hann P, Frank T, Wanek W, Drapela T
    2013 - Biology and Fertility of Soils, 49: 1097-1107

    Abstract: 

    Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers-Aporrectodea caliginosa vs. vertical burrowers-Lumbricus terrestris) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg-1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.

  • A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate

    Brandstaetter C, Keiblinger K, Wanek W, Zechmeister-Boltenstern S
    2013 - Plant and soil, 371: 139-154

    Abstract: 

    AIMS: Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech (Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes. METHODS: We measured initial litter chemistry, microbial activity in terms of respiration (CO2), litter mass loss, microbial biomass C and N (Cmic and Nmic), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH4 +, NO3 - and microbial community composition (phospholipid fatty acids - PLFAs). RESULTS: At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration. CONCLUSIONS: The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment. KEYWORDS: Leaf litter decomposition; Microbial biomass; Microbial community structure analysis; Microbial respiration; Microcosm

  • Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing

    Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, Wanek W, Richter A, Rauch I, Decker T, Loy A, Wagner M
    2013 - Proceedings of the National Academy of Sciences of the United States of America (PNAS), 110: 4720-4725

    Abstract: 

    The animal and human intestinal mucosa secretes an assortment of compounds to establish a physical barrier between the host tissue and intestinal contents, a separation that is vital for health. Some pathogenic microorganisms as well as members of the commensal intestinal microbiota have been shown to be able to break down these secreted compounds. Our understanding of host-compound degradation by the commensal microbiota has been limited to knowledge about simplified model systems because of the difficulty in studying the complex intestinal ecosystem in vivo. In this study, we introduce an approach that overcomes previous technical limitations and allows us to observe which microbial cells in the intestine use host-derived compounds. We added stable isotope-labeled threonine i.v. to mice and combined fluorescence in situ hybridization with high-resolution secondary ion mass spectrometry imaging to characterize utilization of host proteins by individual bacterial cells. We show that two bacterial species, Bacteroides acidifaciens and Akkermansia muciniphila, are important host-protein foragers in vivo. Using gnotobiotic mice we show that microbiota composition determines the magnitude and pattern of foraging by these organisms, demonstrating that a complex microbiota is necessary in order for this niche to be fully exploited. These results underscore the importance of in vivo studies of intestinal microbiota, and the approach presented in this study will be a powerful tool to address many other key questions in animal and human microbiome research.

  • Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-­‐oxidizing archaea

    Alves, RJE, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T
    2013 - The ISME Journal: multidisciplinary journal of microbial ecology, 7: 1620-1631

    Abstract: 

    The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota-AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils.

  • Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp.

    Dolinsek J, Lagkouvardos I, Wanek W, Wagner M, Daims H
    2013 - Applied and Environmental Microbiology, 79: 2027-2037

    Abstract: 

    Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with (13)C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the (13)C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage.

Book chapters and other publications

No matching database entries were found.